EditGuard / app.py
Ricoooo's picture
Add local files to repository
8da8f47
raw
history blame
9.97 kB
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw
import requests
from copy import deepcopy
import cv2
from test_gradio import load_image, image_editing
import options.options as option
from utils.JPEG import DiffJPEG
from scipy.io.wavfile import read as wav_read
from scipy.io import wavfile
import os
import math
import argparse
import random
import logging
import torch.distributed as dist
import torch.multiprocessing as mp
from data.data_sampler import DistIterSampler
from utils import util
from data.util import read_img
from models import create_model as create_model_editguard
import base64
import gradio as gr
from scipy.ndimage import zoom
import matplotlib.pyplot as plt
def img_to_base64(filepath):
with open(filepath, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
logo_base64 = img_to_base64("../logo.png")
html_content = f"""
<div style='display: flex; align-items: center; justify-content: center; padding: 20px;'>
<img src='data:image/png;base64,{logo_base64}' alt='Logo' style='height: 50px; margin-right: 20px;'>
<strong><font size='8'>EditGuard<font></strong>
</div>
"""
# Examples
examples = [
["../dataset/examples/0011.png"],
["../dataset/examples/0012.png"],
["../dataset/examples/0003.png"],
["../dataset/examples/0004.png"],
["../dataset/examples/0005.png"],
["../dataset/examples/0006.png"],
["../dataset/examples/0007.png"],
["../dataset/examples/0008.png"],
["../dataset/examples/0009.png"],
["../dataset/examples/0010.png"],
["../dataset/examples/0002.png"],
]
default_example = examples[0]
def hiding(image_input, bit_input, model):
message = np.array([int(bit_input[i:i+1]) for i in range(0, len(bit_input), 1)])
message = message - 0.5
val_data = load_image(image_input, message)
model.feed_data(val_data)
container = model.image_hiding()
from PIL import Image
image = Image.fromarray(container)
return container, container
def rand(num_bits=64):
random_str = ''.join([str(random.randint(0, 1)) for _ in range(num_bits)])
return random_str
def ImageEdit(img, prompt, model_index):
image, mask = img["image"], np.float32(img["mask"])
received_image = image_editing(image, mask, prompt)
return received_image, received_image, received_image
def imgae_model_select(ckp_index=0):
# options
opt = option.parse("options/test_editguard.yml", is_train=True)
# distributed training settings
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
# loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
torch.backends.cudnn.benchmark = True
# create model
model = create_model_editguard(opt)
if ckp_index == 0:
model_pth = '../checkpoints/clean.pth'
print(model_pth)
model.load_test(model_pth)
return model
def Gaussian_image_degradation(image, NL):
image = torch.from_numpy(np.transpose(image, (2, 0, 1)))
image = image.unsqueeze(0)
NL = NL / 255.0
noise = np.random.normal(0, NL, image.shape)
torchnoise = torch.from_numpy(noise).float()
y_forw = image + torchnoise
y_forw = torch.clamp(y_forw, 0, 1)
y_forw = y_forw.permute(0, 2, 3, 1)
y_forw = y_forw.cpu().detach().numpy().squeeze()
y_forw = (y_forw * 255.0).astype(np.uint8)
return y_forw, y_forw
def JPEG_image_degradation(image, NL):
image = image.astype(np.float32)
image = torch.from_numpy(np.transpose(image, (2, 0, 1)))
image = image.unsqueeze(0)
JPEG = DiffJPEG(differentiable=True, quality=int(NL))
y_forw = JPEG(image)
y_forw = y_forw.permute(0, 2, 3, 1)
y_forw = y_forw.cpu().detach().numpy().squeeze()
y_forw = (y_forw * 255.0).astype(np.uint8)
return y_forw, y_forw
def revealing(image_edited, input_bit, model_list, model):
if model_list==0:
number = 0.2
else:
number = 0.2
container_data = load_image(image_edited) ## load tampered images
model.feed_data(container_data)
mask, remesg = model.image_recovery(number)
mask = Image.fromarray(mask.astype(np.uint8))
remesg = remesg.cpu().numpy()[0]
remesg = ''.join([str(int(x)) for x in remesg])
bit_acc = calculate_similarity_percentage(input_bit, remesg)
return mask, remesg, bit_acc
def calculate_similarity_percentage(str1, str2):
if len(str1) == 0:
return "原始版权水印未知"
elif len(str1) != len(str2):
return "输入输出水印长度不同"
total_length = len(str1)
same_count = sum(1 for x, y in zip(str1, str2) if x == y)
similarity_percentage = (same_count / total_length) * 100
return f"{similarity_percentage}%"
# Description
title = "<center><strong><font size='8'>EditGuard<font></strong></center>"
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
with gr.Blocks(css=css, title="EditGuard") as demo:
gr.HTML(html_content)
model = gr.State(value = None)
save_h = gr.State(value = None)
save_w = gr.State(value = None)
sam_global_points = gr.State([])
sam_global_point_label = gr.State([])
sam_original_image = gr.State(value=None)
sam_mask = gr.State(value=None)
with gr.Tabs():
with gr.TabItem('多功能取证水印'):
DESCRIPTION = """
## 使用方法:
- 上传图像和版权水印(64位比特序列),点击"嵌入水印"按钮,生成带水印的图像。
- 涂抹要编辑的区域,并使用Inpainting算法编辑图像。
- 点击"提取"按钮检测篡改区域并输出版权水印。"""
gr.Markdown(DESCRIPTION)
save_inpainted_image = gr.State(value=None)
with gr.Column():
with gr.Row():
model_list = gr.Dropdown(label="选择模型", choices=["模型1"], type = 'index')
clear_button = gr.Button("清除全部")
with gr.Box():
gr.Markdown("# 1. 嵌入水印")
with gr.Row():
with gr.Column():
image_input = gr.Image(source='upload', label="原始图片", interactive=True, type="numpy", value=default_example[0])
with gr.Row():
bit_input = gr.Textbox(label="输入版权水印(64位比特序列)", placeholder="在这里输入...")
rand_bit = gr.Button("🎲 随机生成版权水印")
hiding_button = gr.Button("嵌入水印")
with gr.Column():
image_watermark = gr.Image(source="upload", label="带有水印的图片", interactive=True, type="numpy")
with gr.Box():
gr.Markdown("# 2. 篡改图片")
with gr.Row():
with gr.Column():
image_edit = gr.Image(source='upload',tool="sketch", label="选取篡改区域", interactive=True, type="numpy")
inpainting_model_list = gr.Dropdown(label="选择篡改模型", choices=["模型1:SD_inpainting"], type = 'index')
text_prompt = gr.Textbox(label="篡改提示词")
inpainting_button = gr.Button("篡改图片")
with gr.Column():
image_edited = gr.Image(source="upload", label="篡改结果", interactive=True, type="numpy")
with gr.Box():
gr.Markdown("# 3. 提取水印&篡改区域")
with gr.Row():
with gr.Column():
image_edited_1 = gr.Image(source="upload", label="待提取图片", interactive=True, type="numpy")
revealing_button = gr.Button("提取")
with gr.Column():
edit_mask = gr.Image(source='upload', label="编辑区域蒙版预测", interactive=True, type="numpy")
bit_output = gr.Textbox(label="版权水印预测")
acc_output = gr.Textbox(label="水印预测准确率")
gr.Examples(
examples=examples,
inputs=[image_input],
)
model_list.change(
imgae_model_select, inputs = [model_list], outputs=[model]
)
hiding_button.click(
hiding, inputs=[image_input, bit_input, model], outputs=[image_watermark, image_edit]
)
rand_bit.click(
rand, inputs=[], outputs=[bit_input]
)
inpainting_button.click(
ImageEdit, inputs = [image_edit, text_prompt, inpainting_model_list], outputs=[image_edited, image_edited_1, save_inpainted_image]
)
revealing_button.click(
revealing, inputs=[image_edited_1, bit_input, model_list, model], outputs=[edit_mask, bit_output, acc_output]
)
demo.launch(server_name="0.0.0.0", server_port=2004, share=True, favicon_path='../logo.png')