import gradio as gr import numpy as np import torch from PIL import Image, ImageDraw import requests from copy import deepcopy import cv2 from test_gradio import load_image, image_editing import options.options as option from utils.JPEG import DiffJPEG from scipy.io.wavfile import read as wav_read from scipy.io import wavfile import os import math import argparse import random import logging import torch.distributed as dist import torch.multiprocessing as mp from data.data_sampler import DistIterSampler from utils import util from data.util import read_img from models import create_model as create_model_editguard import base64 import gradio as gr from scipy.ndimage import zoom import matplotlib.pyplot as plt def img_to_base64(filepath): with open(filepath, "rb") as img_file: return base64.b64encode(img_file.read()).decode() logo_base64 = img_to_base64("../logo.png") html_content = f"""
Logo EditGuard
""" # Examples examples = [ ["../dataset/examples/0011.png"], ["../dataset/examples/0012.png"], ["../dataset/examples/0003.png"], ["../dataset/examples/0004.png"], ["../dataset/examples/0005.png"], ["../dataset/examples/0006.png"], ["../dataset/examples/0007.png"], ["../dataset/examples/0008.png"], ["../dataset/examples/0009.png"], ["../dataset/examples/0010.png"], ["../dataset/examples/0002.png"], ] default_example = examples[0] def hiding(image_input, bit_input, model): message = np.array([int(bit_input[i:i+1]) for i in range(0, len(bit_input), 1)]) message = message - 0.5 val_data = load_image(image_input, message) model.feed_data(val_data) container = model.image_hiding() from PIL import Image image = Image.fromarray(container) return container, container def rand(num_bits=64): random_str = ''.join([str(random.randint(0, 1)) for _ in range(num_bits)]) return random_str def ImageEdit(img, prompt, model_index): image, mask = img["image"], np.float32(img["mask"]) received_image = image_editing(image, mask, prompt) return received_image, received_image, received_image def imgae_model_select(ckp_index=0): # options opt = option.parse("options/test_editguard.yml", is_train=True) # distributed training settings opt['dist'] = False rank = -1 print('Disabled distributed training.') # loading resume state if exists if opt['path'].get('resume_state', None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load(opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt, resume_state['iter']) # check resume options else: resume_state = None # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) torch.backends.cudnn.benchmark = True # create model model = create_model_editguard(opt) if ckp_index == 0: model_pth = '../checkpoints/clean.pth' print(model_pth) model.load_test(model_pth) return model def Gaussian_image_degradation(image, NL): image = torch.from_numpy(np.transpose(image, (2, 0, 1))) image = image.unsqueeze(0) NL = NL / 255.0 noise = np.random.normal(0, NL, image.shape) torchnoise = torch.from_numpy(noise).float() y_forw = image + torchnoise y_forw = torch.clamp(y_forw, 0, 1) y_forw = y_forw.permute(0, 2, 3, 1) y_forw = y_forw.cpu().detach().numpy().squeeze() y_forw = (y_forw * 255.0).astype(np.uint8) return y_forw, y_forw def JPEG_image_degradation(image, NL): image = image.astype(np.float32) image = torch.from_numpy(np.transpose(image, (2, 0, 1))) image = image.unsqueeze(0) JPEG = DiffJPEG(differentiable=True, quality=int(NL)) y_forw = JPEG(image) y_forw = y_forw.permute(0, 2, 3, 1) y_forw = y_forw.cpu().detach().numpy().squeeze() y_forw = (y_forw * 255.0).astype(np.uint8) return y_forw, y_forw def revealing(image_edited, input_bit, model_list, model): if model_list==0: number = 0.2 else: number = 0.2 container_data = load_image(image_edited) ## load tampered images model.feed_data(container_data) mask, remesg = model.image_recovery(number) mask = Image.fromarray(mask.astype(np.uint8)) remesg = remesg.cpu().numpy()[0] remesg = ''.join([str(int(x)) for x in remesg]) bit_acc = calculate_similarity_percentage(input_bit, remesg) return mask, remesg, bit_acc def calculate_similarity_percentage(str1, str2): if len(str1) == 0: return "原始版权水印未知" elif len(str1) != len(str2): return "输入输出水印长度不同" total_length = len(str1) same_count = sum(1 for x, y in zip(str1, str2) if x == y) similarity_percentage = (same_count / total_length) * 100 return f"{similarity_percentage}%" # Description title = "
EditGuard
" css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" with gr.Blocks(css=css, title="EditGuard") as demo: gr.HTML(html_content) model = gr.State(value = None) save_h = gr.State(value = None) save_w = gr.State(value = None) sam_global_points = gr.State([]) sam_global_point_label = gr.State([]) sam_original_image = gr.State(value=None) sam_mask = gr.State(value=None) with gr.Tabs(): with gr.TabItem('多功能取证水印'): DESCRIPTION = """ ## 使用方法: - 上传图像和版权水印(64位比特序列),点击"嵌入水印"按钮,生成带水印的图像。 - 涂抹要编辑的区域,并使用Inpainting算法编辑图像。 - 点击"提取"按钮检测篡改区域并输出版权水印。""" gr.Markdown(DESCRIPTION) save_inpainted_image = gr.State(value=None) with gr.Column(): with gr.Row(): model_list = gr.Dropdown(label="选择模型", choices=["模型1"], type = 'index') clear_button = gr.Button("清除全部") with gr.Box(): gr.Markdown("# 1. 嵌入水印") with gr.Row(): with gr.Column(): image_input = gr.Image(source='upload', label="原始图片", interactive=True, type="numpy", value=default_example[0]) with gr.Row(): bit_input = gr.Textbox(label="输入版权水印(64位比特序列)", placeholder="在这里输入...") rand_bit = gr.Button("🎲 随机生成版权水印") hiding_button = gr.Button("嵌入水印") with gr.Column(): image_watermark = gr.Image(source="upload", label="带有水印的图片", interactive=True, type="numpy") with gr.Box(): gr.Markdown("# 2. 篡改图片") with gr.Row(): with gr.Column(): image_edit = gr.Image(source='upload',tool="sketch", label="选取篡改区域", interactive=True, type="numpy") inpainting_model_list = gr.Dropdown(label="选择篡改模型", choices=["模型1:SD_inpainting"], type = 'index') text_prompt = gr.Textbox(label="篡改提示词") inpainting_button = gr.Button("篡改图片") with gr.Column(): image_edited = gr.Image(source="upload", label="篡改结果", interactive=True, type="numpy") with gr.Box(): gr.Markdown("# 3. 提取水印&篡改区域") with gr.Row(): with gr.Column(): image_edited_1 = gr.Image(source="upload", label="待提取图片", interactive=True, type="numpy") revealing_button = gr.Button("提取") with gr.Column(): edit_mask = gr.Image(source='upload', label="编辑区域蒙版预测", interactive=True, type="numpy") bit_output = gr.Textbox(label="版权水印预测") acc_output = gr.Textbox(label="水印预测准确率") gr.Examples( examples=examples, inputs=[image_input], ) model_list.change( imgae_model_select, inputs = [model_list], outputs=[model] ) hiding_button.click( hiding, inputs=[image_input, bit_input, model], outputs=[image_watermark, image_edit] ) rand_bit.click( rand, inputs=[], outputs=[bit_input] ) inpainting_button.click( ImageEdit, inputs = [image_edit, text_prompt, inpainting_model_list], outputs=[image_edited, image_edited_1, save_inpainted_image] ) revealing_button.click( revealing, inputs=[image_edited_1, bit_input, model_list, model], outputs=[edit_mask, bit_output, acc_output] ) demo.launch(server_name="0.0.0.0", server_port=2004, share=True, favicon_path='../logo.png')