import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw
import requests
from copy import deepcopy
import cv2
from test_gradio import load_image, image_editing
import options.options as option
from utils.JPEG import DiffJPEG
from scipy.io.wavfile import read as wav_read
from scipy.io import wavfile
import os
import math
import argparse
import random
import logging
import torch.distributed as dist
import torch.multiprocessing as mp
from data.data_sampler import DistIterSampler
from utils import util
from data.util import read_img
from models import create_model as create_model_editguard
import base64
import gradio as gr
from scipy.ndimage import zoom
import matplotlib.pyplot as plt
def img_to_base64(filepath):
with open(filepath, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
logo_base64 = img_to_base64("../logo.png")
html_content = f"""
EditGuard
"""
# Examples
examples = [
["../dataset/examples/0011.png"],
["../dataset/examples/0012.png"],
["../dataset/examples/0003.png"],
["../dataset/examples/0004.png"],
["../dataset/examples/0005.png"],
["../dataset/examples/0006.png"],
["../dataset/examples/0007.png"],
["../dataset/examples/0008.png"],
["../dataset/examples/0009.png"],
["../dataset/examples/0010.png"],
["../dataset/examples/0002.png"],
]
default_example = examples[0]
def hiding(image_input, bit_input, model):
message = np.array([int(bit_input[i:i+1]) for i in range(0, len(bit_input), 1)])
message = message - 0.5
val_data = load_image(image_input, message)
model.feed_data(val_data)
container = model.image_hiding()
from PIL import Image
image = Image.fromarray(container)
return container, container
def rand(num_bits=64):
random_str = ''.join([str(random.randint(0, 1)) for _ in range(num_bits)])
return random_str
def ImageEdit(img, prompt, model_index):
image, mask = img["image"], np.float32(img["mask"])
received_image = image_editing(image, mask, prompt)
return received_image, received_image, received_image
def imgae_model_select(ckp_index=0):
# options
opt = option.parse("options/test_editguard.yml", is_train=True)
# distributed training settings
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
# loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
torch.backends.cudnn.benchmark = True
# create model
model = create_model_editguard(opt)
if ckp_index == 0:
model_pth = '../checkpoints/clean.pth'
print(model_pth)
model.load_test(model_pth)
return model
def Gaussian_image_degradation(image, NL):
image = torch.from_numpy(np.transpose(image, (2, 0, 1)))
image = image.unsqueeze(0)
NL = NL / 255.0
noise = np.random.normal(0, NL, image.shape)
torchnoise = torch.from_numpy(noise).float()
y_forw = image + torchnoise
y_forw = torch.clamp(y_forw, 0, 1)
y_forw = y_forw.permute(0, 2, 3, 1)
y_forw = y_forw.cpu().detach().numpy().squeeze()
y_forw = (y_forw * 255.0).astype(np.uint8)
return y_forw, y_forw
def JPEG_image_degradation(image, NL):
image = image.astype(np.float32)
image = torch.from_numpy(np.transpose(image, (2, 0, 1)))
image = image.unsqueeze(0)
JPEG = DiffJPEG(differentiable=True, quality=int(NL))
y_forw = JPEG(image)
y_forw = y_forw.permute(0, 2, 3, 1)
y_forw = y_forw.cpu().detach().numpy().squeeze()
y_forw = (y_forw * 255.0).astype(np.uint8)
return y_forw, y_forw
def revealing(image_edited, input_bit, model_list, model):
if model_list==0:
number = 0.2
else:
number = 0.2
container_data = load_image(image_edited) ## load tampered images
model.feed_data(container_data)
mask, remesg = model.image_recovery(number)
mask = Image.fromarray(mask.astype(np.uint8))
remesg = remesg.cpu().numpy()[0]
remesg = ''.join([str(int(x)) for x in remesg])
bit_acc = calculate_similarity_percentage(input_bit, remesg)
return mask, remesg, bit_acc
def calculate_similarity_percentage(str1, str2):
if len(str1) == 0:
return "原始版权水印未知"
elif len(str1) != len(str2):
return "输入输出水印长度不同"
total_length = len(str1)
same_count = sum(1 for x, y in zip(str1, str2) if x == y)
similarity_percentage = (same_count / total_length) * 100
return f"{similarity_percentage}%"
# Description
title = "EditGuard"
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
with gr.Blocks(css=css, title="EditGuard") as demo:
gr.HTML(html_content)
model = gr.State(value = None)
save_h = gr.State(value = None)
save_w = gr.State(value = None)
sam_global_points = gr.State([])
sam_global_point_label = gr.State([])
sam_original_image = gr.State(value=None)
sam_mask = gr.State(value=None)
with gr.Tabs():
with gr.TabItem('多功能取证水印'):
DESCRIPTION = """
## 使用方法:
- 上传图像和版权水印(64位比特序列),点击"嵌入水印"按钮,生成带水印的图像。
- 涂抹要编辑的区域,并使用Inpainting算法编辑图像。
- 点击"提取"按钮检测篡改区域并输出版权水印。"""
gr.Markdown(DESCRIPTION)
save_inpainted_image = gr.State(value=None)
with gr.Column():
with gr.Row():
model_list = gr.Dropdown(label="选择模型", choices=["模型1"], type = 'index')
clear_button = gr.Button("清除全部")
with gr.Box():
gr.Markdown("# 1. 嵌入水印")
with gr.Row():
with gr.Column():
image_input = gr.Image(source='upload', label="原始图片", interactive=True, type="numpy", value=default_example[0])
with gr.Row():
bit_input = gr.Textbox(label="输入版权水印(64位比特序列)", placeholder="在这里输入...")
rand_bit = gr.Button("🎲 随机生成版权水印")
hiding_button = gr.Button("嵌入水印")
with gr.Column():
image_watermark = gr.Image(source="upload", label="带有水印的图片", interactive=True, type="numpy")
with gr.Box():
gr.Markdown("# 2. 篡改图片")
with gr.Row():
with gr.Column():
image_edit = gr.Image(source='upload',tool="sketch", label="选取篡改区域", interactive=True, type="numpy")
inpainting_model_list = gr.Dropdown(label="选择篡改模型", choices=["模型1:SD_inpainting"], type = 'index')
text_prompt = gr.Textbox(label="篡改提示词")
inpainting_button = gr.Button("篡改图片")
with gr.Column():
image_edited = gr.Image(source="upload", label="篡改结果", interactive=True, type="numpy")
with gr.Box():
gr.Markdown("# 3. 提取水印&篡改区域")
with gr.Row():
with gr.Column():
image_edited_1 = gr.Image(source="upload", label="待提取图片", interactive=True, type="numpy")
revealing_button = gr.Button("提取")
with gr.Column():
edit_mask = gr.Image(source='upload', label="编辑区域蒙版预测", interactive=True, type="numpy")
bit_output = gr.Textbox(label="版权水印预测")
acc_output = gr.Textbox(label="水印预测准确率")
gr.Examples(
examples=examples,
inputs=[image_input],
)
model_list.change(
imgae_model_select, inputs = [model_list], outputs=[model]
)
hiding_button.click(
hiding, inputs=[image_input, bit_input, model], outputs=[image_watermark, image_edit]
)
rand_bit.click(
rand, inputs=[], outputs=[bit_input]
)
inpainting_button.click(
ImageEdit, inputs = [image_edit, text_prompt, inpainting_model_list], outputs=[image_edited, image_edited_1, save_inpainted_image]
)
revealing_button.click(
revealing, inputs=[image_edited_1, bit_input, model_list, model], outputs=[edit_mask, bit_output, acc_output]
)
demo.launch(server_name="0.0.0.0", server_port=2004, share=True, favicon_path='../logo.png')