Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import os | |
import sys | |
# Add local IndicTransToolkit path | |
sys.path.append(os.path.abspath("libs/IndicTransToolkit")) | |
from IndicTransToolkit.processor import IndicProcessor | |
# Load processor and model | |
st.title("IndicTrans Translator") | |
st.write("Translate English text into Indian languages using IndicTrans2.") | |
ip = IndicProcessor(inference=True) | |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
text = st.text_area("Enter text in English:", height=150) | |
target_lang = st.selectbox("Select Target Language", [ | |
"hin_Deva", "ben_Beng", "pan_Guru", "guj_Gujr", "tam_Taml", "tel_Telu", "mal_Mlym", "mar_Deva", "kan_Knda", "asm_Beng" | |
]) | |
if st.button("Translate"): | |
if not text.strip(): | |
st.warning("Please enter some text.") | |
else: | |
try: | |
batch = ip.preprocess_batch([text], src_lang="eng_Latn", tgt_lang=target_lang) | |
batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt") | |
with torch.inference_mode(): | |
outputs = model.generate(**batch, num_beams=5, max_length=256) | |
with tokenizer.as_target_tokenizer(): | |
decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
translated = ip.postprocess_batch(decoded, lang=target_lang)[0] | |
st.success(f"Translation: {translated}") | |
except Exception as e: | |
st.error(f"Error: {e}") | |