import streamlit as st import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import os import sys # Add local IndicTransToolkit path sys.path.append(os.path.abspath("libs/IndicTransToolkit")) from IndicTransToolkit.processor import IndicProcessor # Load processor and model st.title("IndicTrans Translator") st.write("Translate English text into Indian languages using IndicTrans2.") ip = IndicProcessor(inference=True) tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) text = st.text_area("Enter text in English:", height=150) target_lang = st.selectbox("Select Target Language", [ "hin_Deva", "ben_Beng", "pan_Guru", "guj_Gujr", "tam_Taml", "tel_Telu", "mal_Mlym", "mar_Deva", "kan_Knda", "asm_Beng" ]) if st.button("Translate"): if not text.strip(): st.warning("Please enter some text.") else: try: batch = ip.preprocess_batch([text], src_lang="eng_Latn", tgt_lang=target_lang) batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt") with torch.inference_mode(): outputs = model.generate(**batch, num_beams=5, max_length=256) with tokenizer.as_target_tokenizer(): decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) translated = ip.postprocess_batch(decoded, lang=target_lang)[0] st.success(f"Translation: {translated}") except Exception as e: st.error(f"Error: {e}")