Rabbitt-AI commited on
Commit
26869b2
·
verified ·
1 Parent(s): 7d90bcc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -30
app.py CHANGED
@@ -108,7 +108,6 @@ class MistralRAGChatbot:
108
  def __init__(self, vector_db_path: str, annoy_index_path: str):
109
  self.embeddings, self.texts = self.load_vector_db(vector_db_path)
110
  self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
111
- # self.tfidf_matrix, self.tfidf_vectorizer = self.calculate_tfidf(self.texts)
112
  self.bm25 = BM25Okapi([text.split() for text in self.texts])
113
  self.word2vec_model = self.train_word2vec(self.texts)
114
  self.reranking_methods = {
@@ -131,11 +130,6 @@ class MistralRAGChatbot:
131
  logging.info(f"Loaded Annoy index from {annoy_index_path}.")
132
  return annoy_index
133
 
134
- # def calculate_tfidf(self, texts: List[str]) -> Tuple[np.ndarray, TfidfVectorizer]:
135
- # vectorizer = TfidfVectorizer(stop_words='english')
136
- # tfidf_matrix = vectorizer.fit_transform(texts)
137
- # logging.info("TF-IDF matrix calculated.")
138
- # return tfidf_matrix, vectorizer
139
 
140
  def train_word2vec(self, texts: List[str]) -> Word2Vec:
141
  tokenized_texts = [text.split() for text in texts]
@@ -247,12 +241,6 @@ class MistralRAGChatbot:
247
  logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
248
  return indices, scores
249
 
250
- # def retrieve_with_tfidf(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
251
- # query_vec = self.tfidf_vectorizer.transform([user_query])
252
- # similarities = cosine_similarity(query_vec, self.tfidf_matrix).flatten()
253
- # indices = np.argsort(-similarities)[:top_k]
254
- # logging.debug(f"TF-IDF retrieval returned {len(indices)} documents.")
255
- # return indices, similarities[indices].tolist()
256
 
257
  def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
258
  tokenized_query = user_query.split()
@@ -275,24 +263,6 @@ class MistralRAGChatbot:
275
  indices = np.argsort(-similarities)[:top_k]
276
  return indices, similarities[indices].tolist()
277
 
278
- # def retrieve_with_euclidean(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
279
- # distances = euclidean_distances([query_embedding], self.embeddings).flatten()
280
- # indices = np.argsort(distances)[:top_k]
281
- # logging.debug(f"Euclidean retrieval returned {len(indices)} documents.")
282
- # return indices, distances[indices].tolist()
283
-
284
- # def retrieve_with_jaccard(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
285
- # query_set = set(user_query.lower().split())
286
- # scores = []
287
- # for doc in self.texts:
288
- # doc_set = set(doc.lower().split())
289
- # intersection = query_set.intersection(doc_set)
290
- # union = query_set.union(doc_set)
291
- # score = float(len(intersection)) / len(union) if union else 0
292
- # scores.append(score)
293
- # indices = np.argsort(-np.array(scores))[:top_k]
294
- # logging.debug(f"Jaccard retrieval returned {len(indices)} documents.")
295
- # return indices.tolist(), [scores[i] for i in indices]
296
 
297
  def rerank_documents(
298
  self,
 
108
  def __init__(self, vector_db_path: str, annoy_index_path: str):
109
  self.embeddings, self.texts = self.load_vector_db(vector_db_path)
110
  self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
 
111
  self.bm25 = BM25Okapi([text.split() for text in self.texts])
112
  self.word2vec_model = self.train_word2vec(self.texts)
113
  self.reranking_methods = {
 
130
  logging.info(f"Loaded Annoy index from {annoy_index_path}.")
131
  return annoy_index
132
 
 
 
 
 
 
133
 
134
  def train_word2vec(self, texts: List[str]) -> Word2Vec:
135
  tokenized_texts = [text.split() for text in texts]
 
241
  logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
242
  return indices, scores
243
 
 
 
 
 
 
 
244
 
245
  def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
246
  tokenized_query = user_query.split()
 
263
  indices = np.argsort(-similarities)[:top_k]
264
  return indices, similarities[indices].tolist()
265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
 
267
  def rerank_documents(
268
  self,