Rabbitt-AI commited on
Commit
7d90bcc
·
verified ·
1 Parent(s): 4c05318

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -81
app.py CHANGED
@@ -108,13 +108,10 @@ class MistralRAGChatbot:
108
  def __init__(self, vector_db_path: str, annoy_index_path: str):
109
  self.embeddings, self.texts = self.load_vector_db(vector_db_path)
110
  self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
111
- self.tfidf_matrix, self.tfidf_vectorizer = self.calculate_tfidf(self.texts)
112
  self.bm25 = BM25Okapi([text.split() for text in self.texts])
113
  self.word2vec_model = self.train_word2vec(self.texts)
114
  self.reranking_methods = {
115
- # 'reciprocal_rank_fusion': self.reciprocal_rank_fusion,
116
- # 'weighted_score_fusion': self.weighted_score_fusion,
117
- # 'semantic_similarity': self.semantic_similarity_reranking,
118
  'advanced_fusion': self.advanced_fusion_retrieval
119
  }
120
  logging.info("MistralRAGChatbot initialized successfully.")
@@ -134,11 +131,11 @@ class MistralRAGChatbot:
134
  logging.info(f"Loaded Annoy index from {annoy_index_path}.")
135
  return annoy_index
136
 
137
- def calculate_tfidf(self, texts: List[str]) -> Tuple[np.ndarray, TfidfVectorizer]:
138
- vectorizer = TfidfVectorizer(stop_words='english')
139
- tfidf_matrix = vectorizer.fit_transform(texts)
140
- logging.info("TF-IDF matrix calculated.")
141
- return tfidf_matrix, vectorizer
142
 
143
  def train_word2vec(self, texts: List[str]) -> Word2Vec:
144
  tokenized_texts = [text.split() for text in texts]
@@ -250,12 +247,12 @@ class MistralRAGChatbot:
250
  logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
251
  return indices, scores
252
 
253
- def retrieve_with_tfidf(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
254
- query_vec = self.tfidf_vectorizer.transform([user_query])
255
- similarities = cosine_similarity(query_vec, self.tfidf_matrix).flatten()
256
- indices = np.argsort(-similarities)[:top_k]
257
- logging.debug(f"TF-IDF retrieval returned {len(indices)} documents.")
258
- return indices, similarities[indices].tolist()
259
 
260
  def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
261
  tokenized_query = user_query.split()
@@ -278,24 +275,24 @@ class MistralRAGChatbot:
278
  indices = np.argsort(-similarities)[:top_k]
279
  return indices, similarities[indices].tolist()
280
 
281
- def retrieve_with_euclidean(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
282
- distances = euclidean_distances([query_embedding], self.embeddings).flatten()
283
- indices = np.argsort(distances)[:top_k]
284
- logging.debug(f"Euclidean retrieval returned {len(indices)} documents.")
285
- return indices, distances[indices].tolist()
286
-
287
- def retrieve_with_jaccard(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
288
- query_set = set(user_query.lower().split())
289
- scores = []
290
- for doc in self.texts:
291
- doc_set = set(doc.lower().split())
292
- intersection = query_set.intersection(doc_set)
293
- union = query_set.union(doc_set)
294
- score = float(len(intersection)) / len(union) if union else 0
295
- scores.append(score)
296
- indices = np.argsort(-np.array(scores))[:top_k]
297
- logging.debug(f"Jaccard retrieval returned {len(indices)} documents.")
298
- return indices.tolist(), [scores[i] for i in indices]
299
 
300
  def rerank_documents(
301
  self,
@@ -312,54 +309,6 @@ class MistralRAGChatbot:
312
 
313
  return reranked_docs
314
 
315
- # def reciprocal_rank_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
316
- # k = 60
317
- # method_ranks = {}
318
- # fused_scores = {}
319
- # for doc in docs:
320
- # method = doc['method']
321
- # if method not in method_ranks:
322
- # method_ranks[method] = {doc['index']: 1}
323
- # else:
324
- # method_ranks[method][doc['index']] = len(method_ranks[method]) + 1
325
- # for doc in docs:
326
- # idx = doc['index']
327
- # if idx not in fused_scores:
328
- # fused_scores[idx] = sum(1 / (k + rank) for method_rank in method_ranks.values() for i, rank in method_rank.items() if i == idx)
329
- # reranked_docs = sorted(docs, key=lambda x: fused_scores.get(x['index'], 0), reverse=True)
330
- # for doc in reranked_docs:
331
- # doc['rrf_score'] = fused_scores.get(doc['index'], 0)
332
- # return reranked_docs
333
-
334
- # def weighted_score_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
335
- # method_weights = {
336
- # 'annoy': 0.3,
337
- # 'tfidf': 0.2,
338
- # 'bm25': 0.2,
339
- # 'word2vec': 0.1,
340
- # 'euclidean': 0.1,
341
- # 'jaccard': 0.1
342
- # }
343
- # fused_scores = {}
344
- # for doc in docs:
345
- # idx = doc['index']
346
- # if idx not in fused_scores:
347
- # fused_scores[idx] = doc['score'] * method_weights[doc['method']]
348
- # else:
349
- # fused_scores[idx] += doc['score'] * method_weights[doc['method']]
350
-
351
- # reranked_docs = sorted(docs, key=lambda x: fused_scores[x['index']], reverse=True)
352
- # for doc in reranked_docs:
353
- # doc['wsf_score'] = fused_scores[doc['index']]
354
- # return reranked_docs
355
-
356
- # def semantic_similarity_reranking(self, user_query: str, docs: List[dict]) -> List[dict]:
357
- # query_embedding = np.mean([self.word2vec_model.wv[token] for token in user_query.split() if token in self.word2vec_model.wv], axis=0)
358
- # for doc in docs:
359
- # doc_embedding = np.mean([self.word2vec_model.wv[token] for token in doc['text'].split() if token in self.word2vec_model.wv], axis=0)
360
- # doc_embedding = doc_embedding if doc_embedding.shape == query_embedding.shape else np.zeros(query_embedding.shape)
361
- # doc['semantic_score'] = cosine_similarity([query_embedding], [doc_embedding])[0][0]
362
- # return sorted(docs, key=lambda x: x['semantic_score'], reverse=True)
363
 
364
  def build_prompt(self, context: str, user_query: str, response_style: str) -> str:
365
  styles = {
 
108
  def __init__(self, vector_db_path: str, annoy_index_path: str):
109
  self.embeddings, self.texts = self.load_vector_db(vector_db_path)
110
  self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
111
+ # self.tfidf_matrix, self.tfidf_vectorizer = self.calculate_tfidf(self.texts)
112
  self.bm25 = BM25Okapi([text.split() for text in self.texts])
113
  self.word2vec_model = self.train_word2vec(self.texts)
114
  self.reranking_methods = {
 
 
 
115
  'advanced_fusion': self.advanced_fusion_retrieval
116
  }
117
  logging.info("MistralRAGChatbot initialized successfully.")
 
131
  logging.info(f"Loaded Annoy index from {annoy_index_path}.")
132
  return annoy_index
133
 
134
+ # def calculate_tfidf(self, texts: List[str]) -> Tuple[np.ndarray, TfidfVectorizer]:
135
+ # vectorizer = TfidfVectorizer(stop_words='english')
136
+ # tfidf_matrix = vectorizer.fit_transform(texts)
137
+ # logging.info("TF-IDF matrix calculated.")
138
+ # return tfidf_matrix, vectorizer
139
 
140
  def train_word2vec(self, texts: List[str]) -> Word2Vec:
141
  tokenized_texts = [text.split() for text in texts]
 
247
  logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
248
  return indices, scores
249
 
250
+ # def retrieve_with_tfidf(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
251
+ # query_vec = self.tfidf_vectorizer.transform([user_query])
252
+ # similarities = cosine_similarity(query_vec, self.tfidf_matrix).flatten()
253
+ # indices = np.argsort(-similarities)[:top_k]
254
+ # logging.debug(f"TF-IDF retrieval returned {len(indices)} documents.")
255
+ # return indices, similarities[indices].tolist()
256
 
257
  def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
258
  tokenized_query = user_query.split()
 
275
  indices = np.argsort(-similarities)[:top_k]
276
  return indices, similarities[indices].tolist()
277
 
278
+ # def retrieve_with_euclidean(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
279
+ # distances = euclidean_distances([query_embedding], self.embeddings).flatten()
280
+ # indices = np.argsort(distances)[:top_k]
281
+ # logging.debug(f"Euclidean retrieval returned {len(indices)} documents.")
282
+ # return indices, distances[indices].tolist()
283
+
284
+ # def retrieve_with_jaccard(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
285
+ # query_set = set(user_query.lower().split())
286
+ # scores = []
287
+ # for doc in self.texts:
288
+ # doc_set = set(doc.lower().split())
289
+ # intersection = query_set.intersection(doc_set)
290
+ # union = query_set.union(doc_set)
291
+ # score = float(len(intersection)) / len(union) if union else 0
292
+ # scores.append(score)
293
+ # indices = np.argsort(-np.array(scores))[:top_k]
294
+ # logging.debug(f"Jaccard retrieval returned {len(indices)} documents.")
295
+ # return indices.tolist(), [scores[i] for i in indices]
296
 
297
  def rerank_documents(
298
  self,
 
309
 
310
  return reranked_docs
311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
 
313
  def build_prompt(self, context: str, user_query: str, response_style: str) -> str:
314
  styles = {