InstantID-XS / utils /resampler.py
XuDongZhou's picture
Upload 9 files
96bea52 verified
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
import math
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Rearrange
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=16,
embedding_dim=512,
output_dim=2048,
ff_mult=4,
max_seq_len: int = 257, # CLIP tokens + CLS token
apply_pos_emb: bool = False,
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
):
super().__init__()
# self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
# self.to_latents_from_mean_pooled_seq = (
# nn.Sequential(
# nn.LayerNorm(dim),
# nn.Linear(dim, dim * num_latents_mean_pooled),
# Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
# )
# if num_latents_mean_pooled > 0
# else None
# )
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x):
# if self.pos_emb is not None:
# n, device = x.shape[1], x.device
# pos_emb = self.pos_emb(torch.arange(n, device=device))
# x = x + pos_emb
latents = self.latents.repeat(x.size(0), 1, 1)
# print(self.latents.size(), x.size(), latents.size())
x = self.proj_in(x)
# if self.to_latents_from_mean_pooled_seq:
# meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
# meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
# latents = torch.cat((meanpooled_latents, latents), dim=-2)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
def masked_mean(t, *, dim, mask=None):
if mask is None:
return t.mean(dim=dim)
denom = mask.sum(dim=dim, keepdim=True)
mask = rearrange(mask, "b n -> b n 1")
masked_t = t.masked_fill(~mask, 0.0)
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)