XuDongZhou commited on
Commit
96bea52
1 Parent(s): dfa4ebb

Upload 9 files

Browse files
pipeline_controlnet_xs_sd_xl_instantid.py ADDED
@@ -0,0 +1,1914 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import inspect
4
+ import copy, os
5
+ from safetensors.torch import load_file
6
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
7
+ import collections
8
+ import numpy as np
9
+ import PIL.Image
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from transformers import (
13
+ CLIPImageProcessor,
14
+ CLIPTextModel,
15
+ CLIPTextModelWithProjection,
16
+ CLIPTokenizer,
17
+ )
18
+ import gc
19
+ from diffusers.utils.import_utils import is_xformers_available
20
+ from diffusers.utils.import_utils import is_invisible_watermark_available
21
+
22
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
23
+ from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
24
+ from diffusers.models import AutoencoderKL
25
+ from diffusers.models.attention_processor import (
26
+ AttnProcessor2_0,
27
+ LoRAAttnProcessor2_0,
28
+ LoRAXFormersAttnProcessor,
29
+ XFormersAttnProcessor,
30
+ )
31
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
32
+ from diffusers.schedulers import KarrasDiffusionSchedulers
33
+
34
+ from diffusers.utils import (
35
+ USE_PEFT_BACKEND,
36
+ is_torch_version,
37
+ logging,
38
+ replace_example_docstring,
39
+ scale_lora_layers,
40
+ unscale_lora_layers,
41
+ delete_adapter_layers,
42
+ set_adapter_layers,
43
+ set_weights_and_activate_adapters,
44
+ )
45
+
46
+ from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
47
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
48
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
49
+
50
+
51
+ from utils.callbacks import MultiPipelineCallbacks, PipelineCallback
52
+
53
+ # lora
54
+ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
55
+ from controlnet_xs import ControlNetXSAdapter, UNetControlNetXSModel
56
+ from diffusers.loaders.lora_conversion_utils import _maybe_map_sgm_blocks_to_diffusers, _convert_non_diffusers_lora_to_diffusers
57
+ from utils.tools import get_module_kohya_state_dict_xs
58
+
59
+
60
+ #ipa
61
+ from ip_adapter.resampler import Resampler
62
+ from ip_adapter.utils import is_torch2_available
63
+ if is_torch2_available():
64
+ from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
65
+ else:
66
+ from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
67
+ from ip_adapter.attention_processor import region_control
68
+
69
+
70
+ if is_invisible_watermark_available():
71
+ from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
72
+
73
+
74
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
75
+
76
+
77
+ EXAMPLE_DOC_STRING = """
78
+ Examples:
79
+ ```py
80
+ >>> # !pip install opencv-python transformers accelerate
81
+ >>> from diffusers import StableDiffusionXLControlNetXSPipeline, ControlNetXSAdapter, AutoencoderKL
82
+ >>> from diffusers.utils import load_image
83
+ >>> import numpy as np
84
+ >>> import torch
85
+
86
+ >>> import cv2
87
+ >>> from PIL import Image
88
+
89
+ >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
90
+ >>> negative_prompt = "low quality, bad quality, sketches"
91
+
92
+ >>> # download an image
93
+ >>> image = load_image(
94
+ ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
95
+ ... )
96
+
97
+ >>> # initialize the models and pipeline
98
+ >>> controlnet_conditioning_scale = 0.5
99
+ >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
100
+ >>> controlnet = ControlNetXSAdapter.from_pretrained(
101
+ ... "UmerHA/Testing-ConrolNetXS-SDXL-canny", torch_dtype=torch.float16
102
+ ... )
103
+ >>> pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained(
104
+ ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
105
+ ... )
106
+ >>> pipe.enable_model_cpu_offload()
107
+
108
+ >>> # get canny image
109
+ >>> image = np.array(image)
110
+ >>> image = cv2.Canny(image, 100, 200)
111
+ >>> image = image[:, :, None]
112
+ >>> image = np.concatenate([image, image, image], axis=2)
113
+ >>> canny_image = Image.fromarray(image)
114
+
115
+ >>> # generate image
116
+ >>> image = pipe(
117
+ ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
118
+ ... ).images[0]
119
+ ```
120
+ """
121
+
122
+
123
+ from transformers import CLIPTokenizer
124
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
125
+
126
+ class LongPromptWeight(object):
127
+ """
128
+ Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
129
+ """
130
+
131
+ def __init__(self) -> None:
132
+ pass
133
+
134
+ def parse_prompt_attention(self, text):
135
+ """
136
+ Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
137
+ Accepted tokens are:
138
+ (abc) - increases attention to abc by a multiplier of 1.1
139
+ (abc:3.12) - increases attention to abc by a multiplier of 3.12
140
+ [abc] - decreases attention to abc by a multiplier of 1.1
141
+ \( - literal character '('
142
+ \[ - literal character '['
143
+ \) - literal character ')'
144
+ \] - literal character ']'
145
+ \\ - literal character '\'
146
+ anything else - just text
147
+
148
+ >>> parse_prompt_attention('normal text')
149
+ [['normal text', 1.0]]
150
+ >>> parse_prompt_attention('an (important) word')
151
+ [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
152
+ >>> parse_prompt_attention('(unbalanced')
153
+ [['unbalanced', 1.1]]
154
+ >>> parse_prompt_attention('\(literal\]')
155
+ [['(literal]', 1.0]]
156
+ >>> parse_prompt_attention('(unnecessary)(parens)')
157
+ [['unnecessaryparens', 1.1]]
158
+ >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
159
+ [['a ', 1.0],
160
+ ['house', 1.5730000000000004],
161
+ [' ', 1.1],
162
+ ['on', 1.0],
163
+ [' a ', 1.1],
164
+ ['hill', 0.55],
165
+ [', sun, ', 1.1],
166
+ ['sky', 1.4641000000000006],
167
+ ['.', 1.1]]
168
+ """
169
+ import re
170
+
171
+ re_attention = re.compile(
172
+ r"""
173
+ \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
174
+ \)|]|[^\\()\[\]:]+|:
175
+ """,
176
+ re.X,
177
+ )
178
+
179
+ re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
180
+
181
+ res = []
182
+ round_brackets = []
183
+ square_brackets = []
184
+
185
+ round_bracket_multiplier = 1.1
186
+ square_bracket_multiplier = 1 / 1.1
187
+
188
+ def multiply_range(start_position, multiplier):
189
+ for p in range(start_position, len(res)):
190
+ res[p][1] *= multiplier
191
+
192
+ for m in re_attention.finditer(text):
193
+ text = m.group(0)
194
+ weight = m.group(1)
195
+
196
+ if text.startswith("\\"):
197
+ res.append([text[1:], 1.0])
198
+ elif text == "(":
199
+ round_brackets.append(len(res))
200
+ elif text == "[":
201
+ square_brackets.append(len(res))
202
+ elif weight is not None and len(round_brackets) > 0:
203
+ multiply_range(round_brackets.pop(), float(weight))
204
+ elif text == ")" and len(round_brackets) > 0:
205
+ multiply_range(round_brackets.pop(), round_bracket_multiplier)
206
+ elif text == "]" and len(square_brackets) > 0:
207
+ multiply_range(square_brackets.pop(), square_bracket_multiplier)
208
+ else:
209
+ parts = re.split(re_break, text)
210
+ for i, part in enumerate(parts):
211
+ if i > 0:
212
+ res.append(["BREAK", -1])
213
+ res.append([part, 1.0])
214
+
215
+ for pos in round_brackets:
216
+ multiply_range(pos, round_bracket_multiplier)
217
+
218
+ for pos in square_brackets:
219
+ multiply_range(pos, square_bracket_multiplier)
220
+
221
+ if len(res) == 0:
222
+ res = [["", 1.0]]
223
+
224
+ # merge runs of identical weights
225
+ i = 0
226
+ while i + 1 < len(res):
227
+ if res[i][1] == res[i + 1][1]:
228
+ res[i][0] += res[i + 1][0]
229
+ res.pop(i + 1)
230
+ else:
231
+ i += 1
232
+
233
+ return res
234
+
235
+ def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
236
+ """
237
+ Get prompt token ids and weights, this function works for both prompt and negative prompt
238
+
239
+ Args:
240
+ pipe (CLIPTokenizer)
241
+ A CLIPTokenizer
242
+ prompt (str)
243
+ A prompt string with weights
244
+
245
+ Returns:
246
+ text_tokens (list)
247
+ A list contains token ids
248
+ text_weight (list)
249
+ A list contains the correspodent weight of token ids
250
+
251
+ Example:
252
+ import torch
253
+ from transformers import CLIPTokenizer
254
+
255
+ clip_tokenizer = CLIPTokenizer.from_pretrained(
256
+ "stablediffusionapi/deliberate-v2"
257
+ , subfolder = "tokenizer"
258
+ , dtype = torch.float16
259
+ )
260
+
261
+ token_id_list, token_weight_list = get_prompts_tokens_with_weights(
262
+ clip_tokenizer = clip_tokenizer
263
+ ,prompt = "a (red:1.5) cat"*70
264
+ )
265
+ """
266
+ texts_and_weights = self.parse_prompt_attention(prompt)
267
+ text_tokens, text_weights = [], []
268
+ for word, weight in texts_and_weights:
269
+ # tokenize and discard the starting and the ending token
270
+ token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
271
+ # the returned token is a 1d list: [320, 1125, 539, 320]
272
+
273
+ # merge the new tokens to the all tokens holder: text_tokens
274
+ text_tokens = [*text_tokens, *token]
275
+
276
+ # each token chunk will come with one weight, like ['red cat', 2.0]
277
+ # need to expand weight for each token.
278
+ chunk_weights = [weight] * len(token)
279
+
280
+ # append the weight back to the weight holder: text_weights
281
+ text_weights = [*text_weights, *chunk_weights]
282
+ return text_tokens, text_weights
283
+
284
+ def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
285
+ """
286
+ Produce tokens and weights in groups and pad the missing tokens
287
+
288
+ Args:
289
+ token_ids (list)
290
+ The token ids from tokenizer
291
+ weights (list)
292
+ The weights list from function get_prompts_tokens_with_weights
293
+ pad_last_block (bool)
294
+ Control if fill the last token list to 75 tokens with eos
295
+ Returns:
296
+ new_token_ids (2d list)
297
+ new_weights (2d list)
298
+
299
+ Example:
300
+ token_groups,weight_groups = group_tokens_and_weights(
301
+ token_ids = token_id_list
302
+ , weights = token_weight_list
303
+ )
304
+ """
305
+ bos, eos = 49406, 49407
306
+
307
+ # this will be a 2d list
308
+ new_token_ids = []
309
+ new_weights = []
310
+ while len(token_ids) >= 75:
311
+ # get the first 75 tokens
312
+ head_75_tokens = [token_ids.pop(0) for _ in range(75)]
313
+ head_75_weights = [weights.pop(0) for _ in range(75)]
314
+
315
+ # extract token ids and weights
316
+ temp_77_token_ids = [bos] + head_75_tokens + [eos]
317
+ temp_77_weights = [1.0] + head_75_weights + [1.0]
318
+
319
+ # add 77 token and weights chunk to the holder list
320
+ new_token_ids.append(temp_77_token_ids)
321
+ new_weights.append(temp_77_weights)
322
+
323
+ # padding the left
324
+ if len(token_ids) >= 0:
325
+ padding_len = 75 - len(token_ids) if pad_last_block else 0
326
+
327
+ temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
328
+ new_token_ids.append(temp_77_token_ids)
329
+
330
+ temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
331
+ new_weights.append(temp_77_weights)
332
+
333
+ return new_token_ids, new_weights
334
+
335
+ def get_weighted_text_embeddings_sdxl(
336
+ self,
337
+ pipe: StableDiffusionXLPipeline,
338
+ prompt: str = "",
339
+ prompt_2: str = None,
340
+ neg_prompt: str = "",
341
+ neg_prompt_2: str = None,
342
+ prompt_embeds=None,
343
+ negative_prompt_embeds=None,
344
+ pooled_prompt_embeds=None,
345
+ negative_pooled_prompt_embeds=None,
346
+ extra_emb=None,
347
+ extra_emb_alpha=0.6,
348
+ ):
349
+ """
350
+ This function can process long prompt with weights, no length limitation
351
+ for Stable Diffusion XL
352
+
353
+ Args:
354
+ pipe (StableDiffusionPipeline)
355
+ prompt (str)
356
+ prompt_2 (str)
357
+ neg_prompt (str)
358
+ neg_prompt_2 (str)
359
+ Returns:
360
+ prompt_embeds (torch.Tensor)
361
+ neg_prompt_embeds (torch.Tensor)
362
+ """
363
+ #
364
+ if prompt_embeds is not None and \
365
+ negative_prompt_embeds is not None and \
366
+ pooled_prompt_embeds is not None and \
367
+ negative_pooled_prompt_embeds is not None:
368
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
369
+
370
+ if prompt_2:
371
+ prompt = f"{prompt} {prompt_2}"
372
+
373
+ if neg_prompt_2:
374
+ neg_prompt = f"{neg_prompt} {neg_prompt_2}"
375
+
376
+ eos = pipe.tokenizer.eos_token_id
377
+
378
+ # tokenizer 1
379
+ prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
380
+ neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
381
+
382
+ # tokenizer 2
383
+ # prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
384
+ # neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
385
+ # tokenizer 2 遇到 !! !!!! 等多感叹号和tokenizer 1的效果不一致
386
+ prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
387
+ neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
388
+
389
+ # padding the shorter one for prompt set 1
390
+ prompt_token_len = len(prompt_tokens)
391
+ neg_prompt_token_len = len(neg_prompt_tokens)
392
+
393
+ if prompt_token_len > neg_prompt_token_len:
394
+ # padding the neg_prompt with eos token
395
+ neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
396
+ neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
397
+ else:
398
+ # padding the prompt
399
+ prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
400
+ prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
401
+
402
+ # padding the shorter one for token set 2
403
+ prompt_token_len_2 = len(prompt_tokens_2)
404
+ neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
405
+
406
+ if prompt_token_len_2 > neg_prompt_token_len_2:
407
+ # padding the neg_prompt with eos token
408
+ neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
409
+ neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
410
+ else:
411
+ # padding the prompt
412
+ prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
413
+ prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
414
+
415
+ embeds = []
416
+ neg_embeds = []
417
+
418
+ prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(),
419
+ prompt_weights.copy())
420
+
421
+ neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
422
+ neg_prompt_tokens.copy(), neg_prompt_weights.copy()
423
+ )
424
+
425
+ prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
426
+ prompt_tokens_2.copy(), prompt_weights_2.copy()
427
+ )
428
+
429
+ neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
430
+ neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
431
+ )
432
+
433
+ # get prompt embeddings one by one is not working.
434
+ for i in range(len(prompt_token_groups)):
435
+ # get positive prompt embeddings with weights
436
+ token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
437
+ weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
438
+
439
+ token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
440
+
441
+ # use first text encoder
442
+ prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
443
+ prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
444
+
445
+ # use second text encoder
446
+ prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
447
+ prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
448
+ pooled_prompt_embeds = prompt_embeds_2[0]
449
+
450
+ prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
451
+ token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
452
+
453
+ for j in range(len(weight_tensor)):
454
+ if weight_tensor[j] != 1.0:
455
+ token_embedding[j] = (
456
+ token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
457
+ )
458
+
459
+ token_embedding = token_embedding.unsqueeze(0)
460
+ embeds.append(token_embedding)
461
+
462
+ # get negative prompt embeddings with weights
463
+ neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
464
+ neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
465
+ neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
466
+
467
+ # use first text encoder
468
+ neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
469
+ neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
470
+
471
+ # use second text encoder
472
+ neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
473
+ neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
474
+ negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
475
+
476
+ neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
477
+ neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
478
+
479
+ for z in range(len(neg_weight_tensor)):
480
+ if neg_weight_tensor[z] != 1.0:
481
+ neg_token_embedding[z] = (
482
+ neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) *
483
+ neg_weight_tensor[z]
484
+ )
485
+
486
+ neg_token_embedding = neg_token_embedding.unsqueeze(0)
487
+ neg_embeds.append(neg_token_embedding)
488
+
489
+ prompt_embeds = torch.cat(embeds, dim=1)
490
+ negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
491
+
492
+ if extra_emb is not None:
493
+ extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
494
+ prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
495
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
496
+ print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
497
+
498
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
499
+
500
+ def get_prompt_embeds(self, *args, **kwargs):
501
+ prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
502
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
503
+ return prompt_embeds
504
+
505
+
506
+ class StableDiffusionXLControlNetXSPipeline(
507
+ DiffusionPipeline,
508
+ TextualInversionLoaderMixin,
509
+ StableDiffusionXLLoraLoaderMixin,
510
+ FromSingleFileMixin,
511
+ ):
512
+ r"""
513
+ Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet-XS guidance.
514
+
515
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
516
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
517
+
518
+ The pipeline also inherits the following loading methods:
519
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
520
+ - [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
521
+ - [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
522
+
523
+ Args:
524
+ vae ([`AutoencoderKL`]):
525
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
526
+ text_encoder ([`~transformers.CLIPTextModel`]):
527
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
528
+ text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
529
+ Second frozen text-encoder
530
+ ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
531
+ tokenizer ([`~transformers.CLIPTokenizer`]):
532
+ A `CLIPTokenizer` to tokenize text.
533
+ tokenizer_2 ([`~transformers.CLIPTokenizer`]):
534
+ A `CLIPTokenizer` to tokenize text.
535
+ unet ([`UNet2DConditionModel`]):
536
+ A [`UNet2DConditionModel`] used to create a UNetControlNetXSModel to denoise the encoded image latents.
537
+ controlnet ([`ControlNetXSAdapter`]):
538
+ A [`ControlNetXSAdapter`] to be used in combination with `unet` to denoise the encoded image latents.
539
+ scheduler ([`SchedulerMixin`]):
540
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
541
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
542
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
543
+ Whether the negative prompt embeddings should always be set to 0. Also see the config of
544
+ `stabilityai/stable-diffusion-xl-base-1-0`.
545
+ add_watermarker (`bool`, *optional*):
546
+ Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
547
+ watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
548
+ watermarker is used.
549
+ """
550
+
551
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
552
+ _optional_components = [
553
+ "tokenizer",
554
+ "tokenizer_2",
555
+ "text_encoder",
556
+ "text_encoder_2",
557
+ "feature_extractor",
558
+ ]
559
+ _callback_tensor_inputs = [
560
+ "latents",
561
+ "prompt_embeds",
562
+ "negative_prompt_embeds",
563
+ "add_text_embeds",
564
+ "add_time_ids",
565
+ "negative_pooled_prompt_embeds",
566
+ "negative_add_time_ids",
567
+ ]
568
+
569
+ def __init__(
570
+ self,
571
+ vae: AutoencoderKL,
572
+ text_encoder: CLIPTextModel,
573
+ text_encoder_2: CLIPTextModelWithProjection,
574
+ tokenizer: CLIPTokenizer,
575
+ tokenizer_2: CLIPTokenizer,
576
+ unet: Union[UNet2DConditionModel, UNetControlNetXSModel],
577
+ controlnet: ControlNetXSAdapter,
578
+ scheduler: KarrasDiffusionSchedulers,
579
+ force_zeros_for_empty_prompt: bool = True,
580
+ add_watermarker: Optional[bool] = None,
581
+ feature_extractor: CLIPImageProcessor = None,
582
+ ):
583
+ super().__init__()
584
+ # self.org_unet_config = copy.deepcopy(unet.config)
585
+ if isinstance(unet, UNet2DConditionModel):
586
+ unet = UNetControlNetXSModel.from_unet(unet, controlnet)
587
+
588
+ self.register_modules(
589
+ vae=vae,
590
+ text_encoder=text_encoder,
591
+ text_encoder_2=text_encoder_2,
592
+ tokenizer=tokenizer,
593
+ tokenizer_2=tokenizer_2,
594
+ unet=unet,
595
+ controlnet=controlnet,
596
+ scheduler=scheduler,
597
+ feature_extractor=feature_extractor,
598
+ )
599
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
600
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
601
+ self.control_image_processor = VaeImageProcessor(
602
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
603
+ )
604
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
605
+
606
+ if add_watermarker:
607
+ self.watermark = StableDiffusionXLWatermarker()
608
+ else:
609
+ self.watermark = None
610
+
611
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
612
+
613
+ def cuda(self, org_unet_config=None, device='cuda', dtype=torch.float16, use_xformers=False):
614
+ self.org_unet_config = org_unet_config
615
+ self.to(device, dtype)
616
+
617
+ if hasattr(self, 'image_proj_model'):
618
+ self.image_proj_model.to(device).to(dtype)
619
+
620
+ if use_xformers:
621
+ if is_xformers_available():
622
+ import xformers
623
+ from packaging import version
624
+
625
+ xformers_version = version.parse(xformers.__version__)
626
+ if xformers_version == version.parse("0.0.16"):
627
+ logger.warn(
628
+ "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
629
+ )
630
+ self.enable_xformers_memory_efficient_attention()
631
+ else:
632
+ raise ValueError("xformers is not available. Make sure it is installed correctly")
633
+
634
+ def encode_prompt(
635
+ self,
636
+ prompt: str,
637
+ prompt_2: Optional[str] = None,
638
+ device: Optional[torch.device] = None,
639
+ num_images_per_prompt: int = 1,
640
+ do_classifier_free_guidance: bool = True,
641
+ negative_prompt: Optional[str] = None,
642
+ negative_prompt_2: Optional[str] = None,
643
+ prompt_embeds: Optional[torch.Tensor] = None,
644
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
645
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
646
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
647
+ lora_scale: Optional[float] = None,
648
+ clip_skip: Optional[int] = None,
649
+ ):
650
+ r"""
651
+ Encodes the prompt into text encoder hidden states.
652
+
653
+ Args:
654
+ prompt (`str` or `List[str]`, *optional*):
655
+ prompt to be encoded
656
+ prompt_2 (`str` or `List[str]`, *optional*):
657
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
658
+ used in both text-encoders
659
+ device: (`torch.device`):
660
+ torch device
661
+ num_images_per_prompt (`int`):
662
+ number of images that should be generated per prompt
663
+ do_classifier_free_guidance (`bool`):
664
+ whether to use classifier free guidance or not
665
+ negative_prompt (`str` or `List[str]`, *optional*):
666
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
667
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
668
+ less than `1`).
669
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
670
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
671
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
672
+ prompt_embeds (`torch.Tensor`, *optional*):
673
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
674
+ provided, text embeddings will be generated from `prompt` input argument.
675
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
676
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
677
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
678
+ argument.
679
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
680
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
681
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
682
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
683
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
684
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
685
+ input argument.
686
+ lora_scale (`float`, *optional*):
687
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
688
+ clip_skip (`int`, *optional*):
689
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
690
+ the output of the pre-final layer will be used for computing the prompt embeddings.
691
+ """
692
+ device = device or self._execution_device
693
+
694
+ # set lora scale so that monkey patched LoRA
695
+ # function of text encoder can correctly access it
696
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
697
+ self._lora_scale = lora_scale
698
+
699
+ # dynamically adjust the LoRA scale
700
+ if self.text_encoder is not None:
701
+ if not USE_PEFT_BACKEND:
702
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
703
+ else:
704
+ scale_lora_layers(self.text_encoder, lora_scale)
705
+
706
+ if self.text_encoder_2 is not None:
707
+ if not USE_PEFT_BACKEND:
708
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
709
+ else:
710
+ scale_lora_layers(self.text_encoder_2, lora_scale)
711
+
712
+ prompt = [prompt] if isinstance(prompt, str) else prompt
713
+
714
+ if prompt is not None:
715
+ batch_size = len(prompt)
716
+ else:
717
+ batch_size = prompt_embeds.shape[0]
718
+
719
+ # Define tokenizers and text encoders
720
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
721
+ text_encoders = (
722
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
723
+ )
724
+
725
+ if prompt_embeds is None:
726
+ prompt_2 = prompt_2 or prompt
727
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
728
+
729
+ # textual inversion: process multi-vector tokens if necessary
730
+ prompt_embeds_list = []
731
+ prompts = [prompt, prompt_2]
732
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
733
+ if isinstance(self, TextualInversionLoaderMixin):
734
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
735
+
736
+ text_inputs = tokenizer(
737
+ prompt,
738
+ padding="max_length",
739
+ max_length=tokenizer.model_max_length,
740
+ truncation=True,
741
+ return_tensors="pt",
742
+ )
743
+
744
+ text_input_ids = text_inputs.input_ids
745
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
746
+
747
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
748
+ text_input_ids, untruncated_ids
749
+ ):
750
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
751
+ logger.warning(
752
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
753
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
754
+ )
755
+
756
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
757
+
758
+ # We are only ALWAYS interested in the pooled output of the final text encoder
759
+ pooled_prompt_embeds = prompt_embeds[0]
760
+ if clip_skip is None:
761
+ prompt_embeds = prompt_embeds.hidden_states[-2]
762
+ else:
763
+ # "2" because SDXL always indexes from the penultimate layer.
764
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
765
+
766
+ prompt_embeds_list.append(prompt_embeds)
767
+
768
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
769
+
770
+ # get unconditional embeddings for classifier free guidance
771
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
772
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
773
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
774
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
775
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
776
+ negative_prompt = negative_prompt or ""
777
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
778
+
779
+ # normalize str to list
780
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
781
+ negative_prompt_2 = (
782
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
783
+ )
784
+
785
+ uncond_tokens: List[str]
786
+ if prompt is not None and type(prompt) is not type(negative_prompt):
787
+ raise TypeError(
788
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
789
+ f" {type(prompt)}."
790
+ )
791
+ elif batch_size != len(negative_prompt):
792
+ raise ValueError(
793
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
794
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
795
+ " the batch size of `prompt`."
796
+ )
797
+ else:
798
+ uncond_tokens = [negative_prompt, negative_prompt_2]
799
+
800
+ negative_prompt_embeds_list = []
801
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
802
+ if isinstance(self, TextualInversionLoaderMixin):
803
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
804
+
805
+ max_length = prompt_embeds.shape[1]
806
+ uncond_input = tokenizer(
807
+ negative_prompt,
808
+ padding="max_length",
809
+ max_length=max_length,
810
+ truncation=True,
811
+ return_tensors="pt",
812
+ )
813
+
814
+ negative_prompt_embeds = text_encoder(
815
+ uncond_input.input_ids.to(device),
816
+ output_hidden_states=True,
817
+ )
818
+ # We are only ALWAYS interested in the pooled output of the final text encoder
819
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
820
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
821
+
822
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
823
+
824
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
825
+
826
+ if self.text_encoder_2 is not None:
827
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
828
+ else:
829
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
830
+
831
+ bs_embed, seq_len, _ = prompt_embeds.shape
832
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
833
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
834
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
835
+
836
+ if do_classifier_free_guidance:
837
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
838
+ seq_len = negative_prompt_embeds.shape[1]
839
+
840
+ if self.text_encoder_2 is not None:
841
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
842
+ else:
843
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
844
+
845
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
846
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
847
+
848
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
849
+ bs_embed * num_images_per_prompt, -1
850
+ )
851
+ if do_classifier_free_guidance:
852
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
853
+ bs_embed * num_images_per_prompt, -1
854
+ )
855
+
856
+ if self.text_encoder is not None:
857
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
858
+ # Retrieve the original scale by scaling back the LoRA layers
859
+ unscale_lora_layers(self.text_encoder, lora_scale)
860
+
861
+ if self.text_encoder_2 is not None:
862
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
863
+ # Retrieve the original scale by scaling back the LoRA layers
864
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
865
+
866
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
867
+
868
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
869
+ def prepare_extra_step_kwargs(self, generator, eta):
870
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
871
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
872
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
873
+ # and should be between [0, 1]
874
+
875
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
876
+ extra_step_kwargs = {}
877
+ if accepts_eta:
878
+ extra_step_kwargs["eta"] = eta
879
+
880
+ # check if the scheduler accepts generator
881
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
882
+ if accepts_generator:
883
+ extra_step_kwargs["generator"] = generator
884
+ return extra_step_kwargs
885
+
886
+ def check_inputs(
887
+ self,
888
+ prompt,
889
+ prompt_2,
890
+ image,
891
+ negative_prompt=None,
892
+ negative_prompt_2=None,
893
+ prompt_embeds=None,
894
+ negative_prompt_embeds=None,
895
+ pooled_prompt_embeds=None,
896
+ negative_pooled_prompt_embeds=None,
897
+ controlnet_conditioning_scale=1.0,
898
+ control_guidance_start=0.0,
899
+ control_guidance_end=1.0,
900
+ callback_on_step_end_tensor_inputs=None,
901
+ ):
902
+ if callback_on_step_end_tensor_inputs is not None and not all(
903
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
904
+ ):
905
+ raise ValueError(
906
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
907
+ )
908
+
909
+ if prompt is not None and prompt_embeds is not None:
910
+ raise ValueError(
911
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
912
+ " only forward one of the two."
913
+ )
914
+ elif prompt_2 is not None and prompt_embeds is not None:
915
+ raise ValueError(
916
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
917
+ " only forward one of the two."
918
+ )
919
+ elif prompt is None and prompt_embeds is None:
920
+ raise ValueError(
921
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
922
+ )
923
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
924
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
925
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
926
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
927
+
928
+ if negative_prompt is not None and negative_prompt_embeds is not None:
929
+ raise ValueError(
930
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
931
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
932
+ )
933
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
934
+ raise ValueError(
935
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
936
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
937
+ )
938
+
939
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
940
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
941
+ raise ValueError(
942
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
943
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
944
+ f" {negative_prompt_embeds.shape}."
945
+ )
946
+
947
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
948
+ raise ValueError(
949
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
950
+ )
951
+
952
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
953
+ raise ValueError(
954
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
955
+ )
956
+
957
+ # Check `image` and ``controlnet_conditioning_scale``
958
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
959
+ self.unet, torch._dynamo.eval_frame.OptimizedModule
960
+ )
961
+ if (
962
+ isinstance(self.unet, UNetControlNetXSModel)
963
+ or is_compiled
964
+ and isinstance(self.unet._orig_mod, UNetControlNetXSModel)
965
+ ):
966
+ self.check_image(image, prompt, prompt_embeds)
967
+ if not isinstance(controlnet_conditioning_scale, float):
968
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
969
+ else:
970
+ assert False
971
+
972
+ start, end = control_guidance_start, control_guidance_end
973
+ if start >= end:
974
+ raise ValueError(
975
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
976
+ )
977
+ if start < 0.0:
978
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
979
+ if end > 1.0:
980
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
981
+
982
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
983
+ def check_image(self, image, prompt, prompt_embeds):
984
+ image_is_pil = isinstance(image, PIL.Image.Image)
985
+ image_is_tensor = isinstance(image, torch.Tensor)
986
+ image_is_np = isinstance(image, np.ndarray)
987
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
988
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
989
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
990
+
991
+ if (
992
+ not image_is_pil
993
+ and not image_is_tensor
994
+ and not image_is_np
995
+ and not image_is_pil_list
996
+ and not image_is_tensor_list
997
+ and not image_is_np_list
998
+ ):
999
+ raise TypeError(
1000
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
1001
+ )
1002
+
1003
+ if image_is_pil:
1004
+ image_batch_size = 1
1005
+ else:
1006
+ image_batch_size = len(image)
1007
+
1008
+ if prompt is not None and isinstance(prompt, str):
1009
+ prompt_batch_size = 1
1010
+ elif prompt is not None and isinstance(prompt, list):
1011
+ prompt_batch_size = len(prompt)
1012
+ elif prompt_embeds is not None:
1013
+ prompt_batch_size = prompt_embeds.shape[0]
1014
+
1015
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
1016
+ raise ValueError(
1017
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
1018
+ )
1019
+
1020
+ def prepare_image(
1021
+ self,
1022
+ image,
1023
+ width,
1024
+ height,
1025
+ batch_size,
1026
+ num_images_per_prompt,
1027
+ device,
1028
+ dtype,
1029
+ do_classifier_free_guidance=False,
1030
+ ):
1031
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
1032
+ image_batch_size = image.shape[0]
1033
+
1034
+ if image_batch_size == 1:
1035
+ repeat_by = batch_size
1036
+ else:
1037
+ # image batch size is the same as prompt batch size
1038
+ repeat_by = num_images_per_prompt
1039
+
1040
+ image = image.repeat_interleave(repeat_by, dim=0)
1041
+
1042
+ image = image.to(device=device, dtype=dtype)
1043
+
1044
+ if do_classifier_free_guidance:
1045
+ image = torch.cat([image] * 2)
1046
+
1047
+ return image
1048
+
1049
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
1050
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
1051
+ shape = (
1052
+ batch_size,
1053
+ num_channels_latents,
1054
+ int(height) // self.vae_scale_factor,
1055
+ int(width) // self.vae_scale_factor,
1056
+ )
1057
+ if isinstance(generator, list) and len(generator) != batch_size:
1058
+ raise ValueError(
1059
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
1060
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
1061
+ )
1062
+
1063
+ if latents is None:
1064
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
1065
+ else:
1066
+ latents = latents.to(device)
1067
+
1068
+ # scale the initial noise by the standard deviation required by the scheduler
1069
+ latents = latents * self.scheduler.init_noise_sigma
1070
+ return latents
1071
+
1072
+ def _get_add_time_ids(
1073
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
1074
+ ):
1075
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
1076
+
1077
+ passed_add_embed_dim = (
1078
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
1079
+ )
1080
+ expected_add_embed_dim = self.unet.base_add_embedding.linear_1.in_features
1081
+
1082
+ if expected_add_embed_dim != passed_add_embed_dim:
1083
+ raise ValueError(
1084
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
1085
+ )
1086
+
1087
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
1088
+ return add_time_ids
1089
+
1090
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
1091
+ def upcast_vae(self):
1092
+ dtype = self.vae.dtype
1093
+ self.vae.to(dtype=torch.float32)
1094
+ use_torch_2_0_or_xformers = isinstance(
1095
+ self.vae.decoder.mid_block.attentions[0].processor,
1096
+ (
1097
+ AttnProcessor2_0,
1098
+ XFormersAttnProcessor,
1099
+ LoRAXFormersAttnProcessor,
1100
+ LoRAAttnProcessor2_0,
1101
+ ),
1102
+ )
1103
+ # if xformers or torch_2_0 is used attention block does not need
1104
+ # to be in float32 which can save lots of memory
1105
+ if use_torch_2_0_or_xformers:
1106
+ self.vae.post_quant_conv.to(dtype)
1107
+ self.vae.decoder.conv_in.to(dtype)
1108
+ self.vae.decoder.mid_block.to(dtype)
1109
+
1110
+ @property
1111
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.guidance_scale
1112
+ def guidance_scale(self):
1113
+ return self._guidance_scale
1114
+
1115
+ @property
1116
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.clip_skip
1117
+ def clip_skip(self):
1118
+ return self._clip_skip
1119
+
1120
+ @property
1121
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.do_classifier_free_guidance
1122
+ def do_classifier_free_guidance(self):
1123
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
1124
+
1125
+ @property
1126
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.cross_attention_kwargs
1127
+ def cross_attention_kwargs(self):
1128
+ return self._cross_attention_kwargs
1129
+
1130
+ @property
1131
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.num_timesteps
1132
+ def num_timesteps(self):
1133
+ return self._num_timesteps
1134
+
1135
+ def load_ip_adapter(self, image_proj_model, cross_attn_path=None, image_emb_dim=512, num_tokens=16, device='cuda', dtype=torch.float16):
1136
+ self.set_image_proj_model(image_proj_model, image_emb_dim, num_tokens, device=device, dtype=dtype)
1137
+ if cross_attn_path != None:
1138
+ self.set_cross_attn(cross_attn_path, num_tokens)
1139
+
1140
+ def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16, device='cuda', dtype=torch.float16):
1141
+
1142
+ image_proj_model = Resampler(
1143
+ dim=1280,
1144
+ depth=4,
1145
+ dim_head=64,
1146
+ heads=20,
1147
+ num_queries=num_tokens,
1148
+ embedding_dim=image_emb_dim,
1149
+ output_dim=self.unet.config.cross_attention_dim,
1150
+ ff_mult=4,
1151
+ )
1152
+
1153
+ image_proj_model.eval()
1154
+
1155
+ self.image_proj_model = image_proj_model.to(device, dtype=dtype)
1156
+
1157
+ print('**************************** Loading image projection Model ***************************')
1158
+ if isinstance(model_ckpt, collections.OrderedDict):
1159
+ # print('Loading from state dict...')
1160
+ state_dict = model_ckpt
1161
+ elif isinstance(model_ckpt, str):
1162
+ # print(f'Loading state dict from {model_ckpt} ...')
1163
+ # state_dict = torch.load(model_ckpt, map_location="cpu", weights_only=True)
1164
+ state_dict = torch.load(model_ckpt, map_location="cpu", weights_only=True)
1165
+ else:
1166
+ raise TypeError("model_ckpt must be either an OrderedDict or a string (file path).")
1167
+
1168
+ if isinstance(state_dict, tuple):
1169
+ print("\n\n\n state_dict is a tuple \n\n\n")
1170
+ state_dict = state_dict[0]
1171
+
1172
+ self.image_proj_model.load_state_dict(state_dict)
1173
+
1174
+ self.image_proj_model_in_features = image_emb_dim
1175
+
1176
+ del state_dict
1177
+ gc.collect()
1178
+
1179
+ def set_cross_attn(self, cross_attn_path, num_tokens):
1180
+
1181
+ print('**************************** Setting cross attention processors to UNet ***************************')
1182
+
1183
+ # self.unet # 此时unet就是cnxs
1184
+ datatype = self.unet.dtype
1185
+
1186
+ state_dict = torch.load(cross_attn_path, map_location="cpu", weights_only=True)
1187
+ attn_state_dict = {}
1188
+ for key, value in state_dict.items():
1189
+ if 'attn2.processor' in key:
1190
+ attn_state_dict[key] = value
1191
+
1192
+ attn_procs = {}
1193
+ for name in self.unet.attn_processors.keys():
1194
+ if 'ctrl' in name:
1195
+ continue
1196
+ cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
1197
+ if name.startswith("mid_block"):
1198
+ hidden_size = self.unet.config.block_out_channels[-1]
1199
+ elif name.startswith("up_blocks"):
1200
+ block_id = int(name[len("up_blocks.")])
1201
+ hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
1202
+ elif name.startswith("down_blocks"):
1203
+ block_id = int(name[len("down_blocks.")])
1204
+ hidden_size = self.unet.config.block_out_channels[block_id]
1205
+
1206
+ if cross_attention_dim is None:
1207
+ attn_procs[name] = AttnProcessor()
1208
+ else:
1209
+ weights = {
1210
+ "to_k_ip.weight": attn_state_dict[name + ".to_k_ip.weight"],
1211
+ "to_v_ip.weight": attn_state_dict[name + ".to_v_ip.weight"],
1212
+ }
1213
+ attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=num_tokens)
1214
+ attn_procs[name].load_state_dict(weights)
1215
+
1216
+ # print('length of attn_procs:', len(attn_procs)) # 140
1217
+ self.unet.set_attn_processor_unet(attn_procs)
1218
+ self.unet.to(dtype=datatype)
1219
+
1220
+ del attn_state_dict
1221
+ del attn_procs
1222
+ gc.collect()
1223
+
1224
+ def set_ip_adapter_scale(self, scale):
1225
+ unet = self.unet
1226
+ for attn_processor in unet.attn_processors_unet.values():
1227
+ # print(attn_processor)
1228
+ '''
1229
+ Attention(
1230
+ (to_q): Linear(in_features=640, out_features=640, bias=False)
1231
+ (to_k): Linear(in_features=2048, out_features=640, bias=False)
1232
+ (to_v): Linear(in_features=2048, out_features=640, bias=False)
1233
+ (to_out): ModuleList(
1234
+ (0): Linear(in_features=640, out_features=640, bias=True)
1235
+ (1): Dropout(p=0.0, inplace=False)
1236
+ )
1237
+ (processor): IPAttnProcessor2_0(
1238
+ (to_k_ip): Linear(in_features=2048, out_features=640, bias=False)
1239
+ (to_v_ip): Linear(in_features=2048, out_features=640, bias=False)
1240
+ )
1241
+ )
1242
+ '''
1243
+ if isinstance(attn_processor, IPAttnProcessor):
1244
+ # print('set_ip_adapter_scale: ',scale)
1245
+ attn_processor.scale = scale
1246
+
1247
+ def _encode_prompt_image_emb(self, prompt_image_emb, device, num_images_per_prompt, dtype, do_classifier_free_guidance):
1248
+
1249
+ if isinstance(prompt_image_emb, torch.Tensor):
1250
+ prompt_image_emb = prompt_image_emb.clone().detach()
1251
+ else:
1252
+ prompt_image_emb = torch.tensor(prompt_image_emb)
1253
+
1254
+ prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
1255
+
1256
+ if do_classifier_free_guidance:
1257
+ prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
1258
+ else:
1259
+ prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
1260
+
1261
+ prompt_image_emb = prompt_image_emb.to(device=self.image_proj_model.latents.device,
1262
+ dtype=self.image_proj_model.latents.dtype)
1263
+ prompt_image_emb = self.image_proj_model(prompt_image_emb)
1264
+
1265
+ bs_embed, seq_len, _ = prompt_image_emb.shape
1266
+ prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
1267
+ prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
1268
+
1269
+ return prompt_image_emb.to(device=device, dtype=dtype)
1270
+
1271
+ def load_lora_weights(
1272
+ self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
1273
+ ):
1274
+ if not USE_PEFT_BACKEND:
1275
+ raise ValueError("PEFT backend is required for this method.")
1276
+
1277
+ # if a dict is passed, copy it instead of modifying it inplace
1278
+ if isinstance(pretrained_model_name_or_path_or_dict, dict):
1279
+ pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
1280
+
1281
+ # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1282
+ if isinstance(pretrained_model_name_or_path_or_dict, str):
1283
+ filename = os.path.basename(pretrained_model_name_or_path_or_dict)
1284
+ extension = os.path.splitext(filename)[1]
1285
+ extension = extension[1:]
1286
+ if extension == "safetensors":
1287
+ lora_weight = load_file(pretrained_model_name_or_path_or_dict)
1288
+ else:
1289
+ lora_weight = torch.load(pretrained_model_name_or_path_or_dict, map_location="cpu")
1290
+
1291
+ if all(
1292
+ (
1293
+ k.startswith("lora_te_")
1294
+ or k.startswith("lora_unet_")
1295
+ or k.startswith("lora_te1_")
1296
+ or k.startswith("lora_te2_")
1297
+ )
1298
+ for k in lora_weight.keys()
1299
+ ):
1300
+ state_dict = _maybe_map_sgm_blocks_to_diffusers(lora_weight, self.org_unet_config)
1301
+ state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
1302
+ state_dict = get_module_kohya_state_dict_xs(state_dict, torch.float16)
1303
+ state_dict, _ = self.lora_state_dict(state_dict, **kwargs)
1304
+ else:
1305
+ state_dict = get_module_kohya_state_dict_xs(lora_weight, torch.float16)
1306
+ state_dict, network_alphas = self.lora_state_dict(state_dict, **kwargs)
1307
+ else:
1308
+ state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1309
+
1310
+
1311
+ is_correct_format = all("lora" in key for key in state_dict.keys())
1312
+ if not is_correct_format:
1313
+ raise ValueError("Invalid LoRA checkpoint.")
1314
+
1315
+ low_cpu_mem_usage = False
1316
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1317
+
1318
+ if is_torch_higher_equal_2_1:
1319
+ from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
1320
+ low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
1321
+
1322
+ assert is_torch_higher_equal_2_1 == low_cpu_mem_usage
1323
+
1324
+ self.load_lora_into_unet(
1325
+ state_dict,
1326
+ network_alphas=network_alphas,
1327
+ unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
1328
+ adapter_name=adapter_name,
1329
+ _pipeline=self,
1330
+ low_cpu_mem_usage=low_cpu_mem_usage,
1331
+ )
1332
+ self.load_lora_into_text_encoder(
1333
+ state_dict,
1334
+ network_alphas=network_alphas,
1335
+ text_encoder=getattr(self, self.text_encoder_name) if not hasattr(self, "text_encoder") else self.text_encoder,
1336
+ lora_scale=self.lora_scale,
1337
+ adapter_name=adapter_name,
1338
+ _pipeline=self,
1339
+ low_cpu_mem_usage=low_cpu_mem_usage,
1340
+ )
1341
+
1342
+ def set_adapters(
1343
+ self,
1344
+ adapter_names: Union[List[str], str],
1345
+ adapter_weights: Optional[Union[List[float], float]] = None,
1346
+ ):
1347
+ """
1348
+ Set the currently active adapters for use in the UNet.
1349
+
1350
+ Args:
1351
+ adapter_names (`List[str]` or `str`):
1352
+ The names of the adapters to use.
1353
+ adapter_weights (`Union[List[float], float]`, *optional*):
1354
+ The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
1355
+ adapters.
1356
+
1357
+ Example:
1358
+
1359
+ ```py
1360
+ from diffusers import AutoPipelineForText2Image
1361
+ import torch
1362
+
1363
+ pipeline = AutoPipelineForText2Image.from_pretrained(
1364
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
1365
+ ).to("cuda")
1366
+ pipeline.load_lora_weights(
1367
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
1368
+ )
1369
+ pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
1370
+ pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
1371
+ ```
1372
+ """
1373
+
1374
+ if not USE_PEFT_BACKEND:
1375
+ raise ValueError("PEFT backend is required for `set_adapters()`.")
1376
+
1377
+ adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
1378
+
1379
+ if adapter_weights is None:
1380
+ adapter_weights = [1.0] * len(adapter_names)
1381
+ elif isinstance(adapter_weights, float):
1382
+ adapter_weights = [adapter_weights] * len(adapter_names)
1383
+
1384
+ if len(adapter_names) != len(adapter_weights):
1385
+ raise ValueError(
1386
+ f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(adapter_weights)}."
1387
+ )
1388
+
1389
+ set_weights_and_activate_adapters(self.unet, adapter_names, adapter_weights)
1390
+
1391
+ '''
1392
+ def disable_lora(self):
1393
+ """
1394
+ Disable the UNet's active LoRA layers.
1395
+
1396
+ Example:
1397
+
1398
+ ```py
1399
+ from diffusers import AutoPipelineForText2Image
1400
+ import torch
1401
+
1402
+ pipeline = AutoPipelineForText2Image.from_pretrained(
1403
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
1404
+ ).to("cuda")
1405
+ pipeline.load_lora_weights(
1406
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
1407
+ )
1408
+ pipeline.disable_lora()
1409
+ ```
1410
+ """
1411
+ if not USE_PEFT_BACKEND:
1412
+ raise ValueError("PEFT backend is required for this method.")
1413
+ set_adapter_layers(self.unet, enabled=False)
1414
+
1415
+ def enable_lora(self):
1416
+ """
1417
+ Enable the UNet's active LoRA layers.
1418
+
1419
+ Example:
1420
+
1421
+ ```py
1422
+ from diffusers import AutoPipelineForText2Image
1423
+ import torch
1424
+
1425
+ pipeline = AutoPipelineForText2Image.from_pretrained(
1426
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
1427
+ ).to("cuda")
1428
+ pipeline.load_lora_weights(
1429
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
1430
+ )
1431
+ pipeline.enable_lora()
1432
+ ```
1433
+ """
1434
+ if not USE_PEFT_BACKEND:
1435
+ raise ValueError("PEFT backend is required for this method.")
1436
+ set_adapter_layers(self.unet, enabled=True)
1437
+
1438
+ def delete_adapters(self, adapter_names: Union[List[str], str]):
1439
+ """
1440
+ Delete an adapter's LoRA layers from the UNet.
1441
+
1442
+ Args:
1443
+ adapter_names (`Union[List[str], str]`):
1444
+ The names (single string or list of strings) of the adapter to delete.
1445
+
1446
+ Example:
1447
+
1448
+ ```py
1449
+ from diffusers import AutoPipelineForText2Image
1450
+ import torch
1451
+
1452
+ pipeline = AutoPipelineForText2Image.from_pretrained(
1453
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
1454
+ ).to("cuda")
1455
+ pipeline.load_lora_weights(
1456
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
1457
+ )
1458
+ pipeline.delete_adapters("cinematic")
1459
+ ```
1460
+ """
1461
+ if not USE_PEFT_BACKEND:
1462
+ raise ValueError("PEFT backend is required for this method.")
1463
+
1464
+ if isinstance(adapter_names, str):
1465
+ adapter_names = [adapter_names]
1466
+
1467
+ for adapter_name in adapter_names:
1468
+ delete_adapter_layers(self.unet, adapter_name)
1469
+
1470
+ # Pop also the corresponding adapter from the config
1471
+ if hasattr(self.unet, "peft_config"):
1472
+ self.unet.peft_config.pop(adapter_name, None)
1473
+ '''
1474
+
1475
+ @torch.no_grad()
1476
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
1477
+ def __call__(
1478
+ self,
1479
+ prompt: Union[str, List[str]] = None,
1480
+ prompt_2: Optional[Union[str, List[str]]] = None,
1481
+ image: PipelineImageInput = None,
1482
+ face_emb: Optional[torch.Tensor] = None,
1483
+ height: Optional[int] = None,
1484
+ width: Optional[int] = None,
1485
+ num_inference_steps: int = 50,
1486
+ guidance_scale: float = 5.0,
1487
+ negative_prompt: Optional[Union[str, List[str]]] = None,
1488
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
1489
+ num_images_per_prompt: Optional[int] = 1,
1490
+ eta: float = 0.0,
1491
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1492
+ latents: Optional[torch.Tensor] = None,
1493
+ prompt_embeds: Optional[torch.Tensor] = None,
1494
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1495
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1496
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1497
+ output_type: Optional[str] = "pil",
1498
+ return_dict: bool = True,
1499
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1500
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
1501
+ control_guidance_start: float = 0.0,
1502
+ control_guidance_end: float = 1.0,
1503
+ original_size: Tuple[int, int] = None,
1504
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1505
+ target_size: Tuple[int, int] = None,
1506
+ negative_original_size: Optional[Tuple[int, int]] = None,
1507
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
1508
+ negative_target_size: Optional[Tuple[int, int]] = None,
1509
+ clip_skip: Optional[int] = None,
1510
+ callback_on_step_end: Optional[
1511
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
1512
+ ] = None,
1513
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
1514
+
1515
+ # IP adapter
1516
+ ip_adapter_scale=None,
1517
+ ):
1518
+ r"""
1519
+ The call function to the pipeline for generation.
1520
+
1521
+ Args:
1522
+ prompt (`str` or `List[str]`, *optional*):
1523
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1524
+ prompt_2 (`str` or `List[str]`, *optional*):
1525
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
1526
+ used in both text-encoders.
1527
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1528
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1529
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
1530
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
1531
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
1532
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
1533
+ images must be passed as a list such that each element of the list can be correctly batched for input
1534
+ to a single ControlNet.
1535
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1536
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
1537
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1538
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1539
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1540
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
1541
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1542
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1543
+ num_inference_steps (`int`, *optional*, defaults to 50):
1544
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1545
+ expense of slower inference.
1546
+ guidance_scale (`float`, *optional*, defaults to 5.0):
1547
+ A higher guidance scale value encourages the model to generate images closely linked to the text
1548
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1549
+ negative_prompt (`str` or `List[str]`, *optional*):
1550
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
1551
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1552
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1553
+ The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
1554
+ and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
1555
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1556
+ The number of images to generate per prompt.
1557
+ eta (`float`, *optional*, defaults to 0.0):
1558
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
1559
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1560
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1561
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
1562
+ generation deterministic.
1563
+ latents (`torch.Tensor`, *optional*):
1564
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1565
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1566
+ tensor is generated by sampling using the supplied random `generator`.
1567
+ prompt_embeds (`torch.Tensor`, *optional*):
1568
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
1569
+ provided, text embeddings are generated from the `prompt` input argument.
1570
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1571
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1572
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1573
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1574
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1575
+ not provided, pooled text embeddings are generated from `prompt` input argument.
1576
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1577
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
1578
+ weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
1579
+ argument.
1580
+ output_type (`str`, *optional*, defaults to `"pil"`):
1581
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1582
+ return_dict (`bool`, *optional*, defaults to `True`):
1583
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1584
+ plain tuple.
1585
+ cross_attention_kwargs (`dict`, *optional*):
1586
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
1587
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1588
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1589
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
1590
+ to the residual in the original `unet`.
1591
+ control_guidance_start (`float`, *optional*, defaults to 0.0):
1592
+ The percentage of total steps at which the ControlNet starts applying.
1593
+ control_guidance_end (`float`, *optional*, defaults to 1.0):
1594
+ The percentage of total steps at which the ControlNet stops applying.
1595
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1596
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1597
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
1598
+ explained in section 2.2 of
1599
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1600
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1601
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1602
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1603
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1604
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1605
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1606
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1607
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
1608
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1609
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1610
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1611
+ micro-conditioning as explained in section 2.2 of
1612
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1613
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1614
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1615
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1616
+ micro-conditioning as explained in section 2.2 of
1617
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1618
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1619
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1620
+ To negatively condition the generation process based on a target image resolution. It should be as same
1621
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1622
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1623
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1624
+ clip_skip (`int`, *optional*):
1625
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1626
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1627
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1628
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1629
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1630
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1631
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1632
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1633
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1634
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1635
+ `._callback_tensor_inputs` attribute of your pipeine class.
1636
+
1637
+ Examples:
1638
+
1639
+ Returns:
1640
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
1641
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] is
1642
+ returned, otherwise a `tuple` is returned containing the output images.
1643
+ """
1644
+
1645
+ lpw = LongPromptWeight()
1646
+
1647
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1648
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1649
+
1650
+ unet = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet
1651
+
1652
+ # 0. set ip_adapter_scale
1653
+ if ip_adapter_scale is not None:
1654
+ self.set_ip_adapter_scale(ip_adapter_scale)
1655
+
1656
+ # 1. Check inputs. Raise error if not correct
1657
+ self.check_inputs(
1658
+ prompt,
1659
+ prompt_2,
1660
+ image,
1661
+ negative_prompt,
1662
+ negative_prompt_2,
1663
+ prompt_embeds,
1664
+ negative_prompt_embeds,
1665
+ pooled_prompt_embeds,
1666
+ negative_pooled_prompt_embeds,
1667
+ controlnet_conditioning_scale,
1668
+ control_guidance_start,
1669
+ control_guidance_end,
1670
+ callback_on_step_end_tensor_inputs,
1671
+ )
1672
+
1673
+ self._guidance_scale = guidance_scale
1674
+ self._clip_skip = clip_skip
1675
+ self._cross_attention_kwargs = cross_attention_kwargs
1676
+ self._interrupt = False
1677
+
1678
+ # 2. Define call parameters
1679
+ if prompt is not None and isinstance(prompt, str):
1680
+ batch_size = 1
1681
+ elif prompt is not None and isinstance(prompt, list):
1682
+ batch_size = len(prompt)
1683
+ else:
1684
+ batch_size = prompt_embeds.shape[0]
1685
+
1686
+ device = self._execution_device
1687
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1688
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1689
+ # corresponds to doing no classifier free guidance.
1690
+ do_classifier_free_guidance = guidance_scale > 1.0
1691
+
1692
+ # 3. Encode input prompt
1693
+
1694
+ # text_encoder_lora_scale = (
1695
+ # self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1696
+ # )
1697
+ # (
1698
+ # prompt_embeds,
1699
+ # negative_prompt_embeds,
1700
+ # pooled_prompt_embeds,
1701
+ # negative_pooled_prompt_embeds,
1702
+ # ) = self.encode_prompt(
1703
+ # prompt,
1704
+ # prompt_2,
1705
+ # device,
1706
+ # num_images_per_prompt,
1707
+ # do_classifier_free_guidance,
1708
+ # negative_prompt,
1709
+ # negative_prompt_2,
1710
+ # prompt_embeds=prompt_embeds,
1711
+ # negative_prompt_embeds=negative_prompt_embeds,
1712
+ # pooled_prompt_embeds=pooled_prompt_embeds,
1713
+ # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1714
+ # lora_scale=text_encoder_lora_scale,
1715
+ # clip_skip=clip_skip,
1716
+ # )
1717
+
1718
+ (
1719
+ prompt_embeds,
1720
+ negative_prompt_embeds,
1721
+ pooled_prompt_embeds,
1722
+ negative_pooled_prompt_embeds,
1723
+ ) = lpw.get_weighted_text_embeddings_sdxl(
1724
+ pipe=self,
1725
+ prompt=prompt,
1726
+ neg_prompt=negative_prompt,
1727
+ prompt_embeds=prompt_embeds,
1728
+ negative_prompt_embeds=negative_prompt_embeds,
1729
+ pooled_prompt_embeds=pooled_prompt_embeds,
1730
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1731
+ )
1732
+ prompt_image_emb = self._encode_prompt_image_emb(
1733
+ face_emb,
1734
+ device,
1735
+ num_images_per_prompt,
1736
+ unet.dtype,
1737
+ do_classifier_free_guidance
1738
+ )
1739
+
1740
+ # 4. Prepare image
1741
+ if isinstance(unet, UNetControlNetXSModel):
1742
+ image = self.prepare_image(
1743
+ image=image,
1744
+ width=width,
1745
+ height=height,
1746
+ batch_size=batch_size * num_images_per_prompt,
1747
+ num_images_per_prompt=num_images_per_prompt,
1748
+ device=device,
1749
+ dtype=unet.dtype,
1750
+ do_classifier_free_guidance=do_classifier_free_guidance,
1751
+ )
1752
+ height, width = image.shape[-2:]
1753
+ else:
1754
+ assert False
1755
+
1756
+ # 5. Prepare timesteps
1757
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1758
+ timesteps = self.scheduler.timesteps
1759
+
1760
+ # 6. Prepare latent variables
1761
+ num_channels_latents = self.unet.in_channels
1762
+ latents = self.prepare_latents(
1763
+ batch_size * num_images_per_prompt,
1764
+ num_channels_latents,
1765
+ height,
1766
+ width,
1767
+ prompt_embeds.dtype,
1768
+ device,
1769
+ generator,
1770
+ latents,
1771
+ )
1772
+
1773
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1774
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1775
+
1776
+ # 7.1 Prepare added time ids & embeddings
1777
+ if isinstance(image, list):
1778
+ original_size = original_size or image[0].shape[-2:]
1779
+ else:
1780
+ original_size = original_size or image.shape[-2:]
1781
+ target_size = target_size or (height, width)
1782
+
1783
+ add_text_embeds = pooled_prompt_embeds
1784
+ if self.text_encoder_2 is None:
1785
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1786
+ else:
1787
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1788
+
1789
+ add_time_ids = self._get_add_time_ids(
1790
+ original_size,
1791
+ crops_coords_top_left,
1792
+ target_size,
1793
+ dtype=prompt_embeds.dtype,
1794
+ text_encoder_projection_dim=text_encoder_projection_dim,
1795
+ )
1796
+
1797
+ if negative_original_size is not None and negative_target_size is not None:
1798
+ negative_add_time_ids = self._get_add_time_ids(
1799
+ negative_original_size,
1800
+ negative_crops_coords_top_left,
1801
+ negative_target_size,
1802
+ dtype=prompt_embeds.dtype,
1803
+ text_encoder_projection_dim=text_encoder_projection_dim,
1804
+ )
1805
+ else:
1806
+ negative_add_time_ids = add_time_ids
1807
+
1808
+ if do_classifier_free_guidance:
1809
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1810
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1811
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1812
+
1813
+ prompt_embeds = prompt_embeds.to(device, dtype=unet.dtype)
1814
+ add_text_embeds = add_text_embeds.to(device, dtype=unet.dtype)
1815
+ add_time_ids = add_time_ids.to(device, dtype=unet.dtype).repeat(batch_size * num_images_per_prompt, 1)
1816
+
1817
+ prompt_image_emb = prompt_image_emb.to(device, dtype=unet.dtype)
1818
+ encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
1819
+ encoder_hidden_states = encoder_hidden_states.to(device, dtype=unet.dtype)
1820
+
1821
+
1822
+ # 8. Denoising loop
1823
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1824
+ self._num_timesteps = len(timesteps)
1825
+ is_controlnet_compiled = is_compiled_module(self.unet)
1826
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1827
+
1828
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1829
+ for i, t in enumerate(timesteps):
1830
+ # Relevant thread:
1831
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1832
+ if is_controlnet_compiled and is_torch_higher_equal_2_1:
1833
+ torch._inductor.cudagraph_mark_step_begin()
1834
+ # expand the latents if we are doing classifier free guidance
1835
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
1836
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1837
+
1838
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1839
+
1840
+ # predict the noise residual
1841
+ apply_control = (
1842
+ i / len(timesteps) >= control_guidance_start and (i + 1) / len(timesteps) <= control_guidance_end
1843
+ )
1844
+
1845
+ noise_pred = self.unet(
1846
+ sample=latent_model_input,
1847
+ timestep=t,
1848
+ unet_encoder_hidden_states=encoder_hidden_states,
1849
+ cnxs_encoder_hidden_states=prompt_image_emb,
1850
+ controlnet_cond=image,
1851
+ conditioning_scale=controlnet_conditioning_scale,
1852
+ cross_attention_kwargs=self.cross_attention_kwargs,
1853
+ added_cond_kwargs=added_cond_kwargs,
1854
+ return_dict=True,
1855
+ apply_control=apply_control,
1856
+ ).sample
1857
+
1858
+ # perform guidance
1859
+ if do_classifier_free_guidance:
1860
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1861
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1862
+
1863
+ # compute the previous noisy sample x_t -> x_t-1
1864
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1865
+
1866
+ if callback_on_step_end is not None:
1867
+ callback_kwargs = {}
1868
+ for k in callback_on_step_end_tensor_inputs:
1869
+ callback_kwargs[k] = locals()[k]
1870
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1871
+
1872
+ latents = callback_outputs.pop("latents", latents)
1873
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1874
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1875
+
1876
+ # call the callback, if provided
1877
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1878
+ progress_bar.update()
1879
+
1880
+ # manually for max memory savings
1881
+ if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
1882
+ self.upcast_vae()
1883
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1884
+
1885
+ if not output_type == "latent":
1886
+ # make sure the VAE is in float32 mode, as it overflows in float16
1887
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1888
+
1889
+ if needs_upcasting:
1890
+ self.upcast_vae()
1891
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1892
+
1893
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1894
+
1895
+ # cast back to fp16 if needed
1896
+ if needs_upcasting:
1897
+ self.vae.to(dtype=torch.float16)
1898
+ else:
1899
+ image = latents
1900
+
1901
+ if not output_type == "latent":
1902
+ # apply watermark if available
1903
+ if self.watermark is not None:
1904
+ image = self.watermark.apply_watermark(image)
1905
+
1906
+ image = self.image_processor.postprocess(image, output_type=output_type)
1907
+
1908
+ # Offload all models
1909
+ self.maybe_free_model_hooks()
1910
+
1911
+ if not return_dict:
1912
+ return (image,)
1913
+
1914
+ return StableDiffusionXLPipelineOutput(images=image)
utils/attention_processor.py ADDED
@@ -0,0 +1,888 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from diffusers.models.attention_processor import AttnProcessor2_0
6
+ from diffusers.models.attention_processor import XFormersAttnProcessor
7
+ try:
8
+ import xformers
9
+ import xformers.ops
10
+ xformers_available = True
11
+ except Exception as e:
12
+ xformers_available = False
13
+
14
+ class RegionControler(object):
15
+ def __init__(self) -> None:
16
+ self.prompt_image_conditioning = []
17
+ region_control = RegionControler()
18
+
19
+ class AttnProcessor(nn.Module):
20
+ r"""
21
+ Default processor for performing attention-related computations.
22
+ """
23
+ def __init__(
24
+ self,
25
+ hidden_size=None,
26
+ cross_attention_dim=None,
27
+ ):
28
+ super().__init__()
29
+
30
+ def forward(
31
+ self,
32
+ attn,
33
+ hidden_states,
34
+ encoder_hidden_states=None,
35
+ attention_mask=None,
36
+ temb=None,
37
+ ):
38
+ residual = hidden_states
39
+
40
+ if attn.spatial_norm is not None:
41
+ hidden_states = attn.spatial_norm(hidden_states, temb)
42
+
43
+ input_ndim = hidden_states.ndim
44
+
45
+ if input_ndim == 4:
46
+ batch_size, channel, height, width = hidden_states.shape
47
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
48
+
49
+ batch_size, sequence_length, _ = (
50
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
51
+ )
52
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
53
+
54
+ if attn.group_norm is not None:
55
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
56
+
57
+ query = attn.to_q(hidden_states)
58
+
59
+ if encoder_hidden_states is None:
60
+ encoder_hidden_states = hidden_states
61
+ elif attn.norm_cross:
62
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
63
+
64
+ key = attn.to_k(encoder_hidden_states)
65
+ value = attn.to_v(encoder_hidden_states)
66
+
67
+ query = attn.head_to_batch_dim(query)
68
+ key = attn.head_to_batch_dim(key)
69
+ value = attn.head_to_batch_dim(value)
70
+
71
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
72
+ hidden_states = torch.bmm(attention_probs, value)
73
+ hidden_states = attn.batch_to_head_dim(hidden_states)
74
+
75
+ # linear proj
76
+ hidden_states = attn.to_out[0](hidden_states)
77
+ # dropout
78
+ hidden_states = attn.to_out[1](hidden_states)
79
+
80
+ if input_ndim == 4:
81
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
82
+
83
+ if attn.residual_connection:
84
+ hidden_states = hidden_states + residual
85
+
86
+ hidden_states = hidden_states / attn.rescale_output_factor
87
+
88
+ return hidden_states
89
+
90
+
91
+ class IPAttnProcessor(nn.Module):
92
+ r"""
93
+ Attention processor for IP-Adapater.
94
+ Args:
95
+ hidden_size (`int`):
96
+ The hidden size of the attention layer.
97
+ cross_attention_dim (`int`):
98
+ The number of channels in the `encoder_hidden_states`.
99
+ scale (`float`, defaults to 1.0):
100
+ the weight scale of image prompt.
101
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
102
+ The context length of the image features.
103
+ """
104
+
105
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
106
+ super().__init__()
107
+
108
+ self.hidden_size = hidden_size
109
+ self.cross_attention_dim = cross_attention_dim
110
+ self.scale = scale
111
+ self.num_tokens = num_tokens
112
+
113
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
114
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
115
+
116
+ def forward(
117
+ self,
118
+ attn,
119
+ hidden_states,
120
+ encoder_hidden_states=None,
121
+ attention_mask=None,
122
+ temb=None,
123
+ ):
124
+ residual = hidden_states
125
+
126
+ if attn.spatial_norm is not None:
127
+ hidden_states = attn.spatial_norm(hidden_states, temb)
128
+
129
+ input_ndim = hidden_states.ndim
130
+
131
+ if input_ndim == 4:
132
+ batch_size, channel, height, width = hidden_states.shape
133
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
134
+
135
+ batch_size, sequence_length, _ = (
136
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
137
+ )
138
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
139
+
140
+ if attn.group_norm is not None:
141
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
142
+
143
+ query = attn.to_q(hidden_states)
144
+
145
+ if encoder_hidden_states is None:
146
+ encoder_hidden_states = hidden_states
147
+ else:
148
+ # get encoder_hidden_states, ip_hidden_states
149
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
150
+ encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
151
+ if attn.norm_cross:
152
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
153
+
154
+ key = attn.to_k(encoder_hidden_states)
155
+ value = attn.to_v(encoder_hidden_states)
156
+
157
+ query = attn.head_to_batch_dim(query)
158
+ key = attn.head_to_batch_dim(key)
159
+ value = attn.head_to_batch_dim(value)
160
+
161
+ if xformers_available:
162
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
163
+ else:
164
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
165
+ hidden_states = torch.bmm(attention_probs, value)
166
+ hidden_states = attn.batch_to_head_dim(hidden_states)
167
+
168
+ # for ip-adapter
169
+ ip_key = self.to_k_ip(ip_hidden_states)
170
+ ip_value = self.to_v_ip(ip_hidden_states)
171
+
172
+ ip_key = attn.head_to_batch_dim(ip_key)
173
+ ip_value = attn.head_to_batch_dim(ip_value)
174
+
175
+ if xformers_available:
176
+ ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
177
+ else:
178
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
179
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
180
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
181
+
182
+ # region control
183
+ if len(region_control.prompt_image_conditioning) == 1:
184
+ region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
185
+ if region_mask is not None:
186
+ h, w = region_mask.shape[:2]
187
+ ratio = (h * w / query.shape[1]) ** 0.5
188
+ mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
189
+ else:
190
+ mask = torch.ones_like(ip_hidden_states)
191
+ ip_hidden_states = ip_hidden_states * mask
192
+
193
+ hidden_states = hidden_states + self.scale * ip_hidden_states
194
+
195
+ # linear proj
196
+ hidden_states = attn.to_out[0](hidden_states)
197
+ # dropout
198
+ hidden_states = attn.to_out[1](hidden_states)
199
+
200
+ if input_ndim == 4:
201
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
202
+
203
+ if attn.residual_connection:
204
+ hidden_states = hidden_states + residual
205
+
206
+ hidden_states = hidden_states / attn.rescale_output_factor
207
+
208
+ return hidden_states
209
+
210
+
211
+ def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
212
+ # TODO attention_mask
213
+ query = query.contiguous()
214
+ key = key.contiguous()
215
+ value = value.contiguous()
216
+ hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
217
+ # hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
218
+ return hidden_states
219
+
220
+
221
+ class AttnProcessor2_0(torch.nn.Module):
222
+ r"""
223
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
224
+ """
225
+ def __init__(
226
+ self,
227
+ hidden_size=None,
228
+ cross_attention_dim=None,
229
+ ):
230
+ super().__init__()
231
+ if not hasattr(F, "scaled_dot_product_attention"):
232
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
233
+
234
+ def forward(
235
+ self,
236
+ attn,
237
+ hidden_states,
238
+ encoder_hidden_states=None,
239
+ attention_mask=None,
240
+ temb=None,
241
+ ):
242
+ residual = hidden_states
243
+
244
+ if attn.spatial_norm is not None:
245
+ hidden_states = attn.spatial_norm(hidden_states, temb)
246
+
247
+ input_ndim = hidden_states.ndim
248
+
249
+ if input_ndim == 4:
250
+ batch_size, channel, height, width = hidden_states.shape
251
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
252
+
253
+ batch_size, sequence_length, _ = (
254
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
255
+ )
256
+
257
+ if attention_mask is not None:
258
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
259
+ # scaled_dot_product_attention expects attention_mask shape to be
260
+ # (batch, heads, source_length, target_length)
261
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
262
+
263
+ if attn.group_norm is not None:
264
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
265
+
266
+ query = attn.to_q(hidden_states)
267
+
268
+ if encoder_hidden_states is None:
269
+ encoder_hidden_states = hidden_states
270
+ elif attn.norm_cross:
271
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
272
+
273
+ key = attn.to_k(encoder_hidden_states)
274
+ value = attn.to_v(encoder_hidden_states)
275
+
276
+ inner_dim = key.shape[-1]
277
+ head_dim = inner_dim // attn.heads
278
+
279
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
280
+
281
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
282
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
283
+
284
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
285
+ # TODO: add support for attn.scale when we move to Torch 2.1
286
+ hidden_states = F.scaled_dot_product_attention(
287
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
288
+ )
289
+
290
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
291
+ hidden_states = hidden_states.to(query.dtype)
292
+
293
+ # linear proj
294
+ hidden_states = attn.to_out[0](hidden_states)
295
+ # dropout
296
+ hidden_states = attn.to_out[1](hidden_states)
297
+
298
+ if input_ndim == 4:
299
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
300
+
301
+ if attn.residual_connection:
302
+ hidden_states = hidden_states + residual
303
+
304
+ hidden_states = hidden_states / attn.rescale_output_factor
305
+
306
+ return hidden_states
307
+
308
+
309
+ class IPAttnProcessor2_0(torch.nn.Module):
310
+ r"""
311
+ Attention processor for IP-Adapater for PyTorch 2.0.
312
+ Args:
313
+ hidden_size (`int`):
314
+ The hidden size of the attention layer.
315
+ cross_attention_dim (`int`):
316
+ The number of channels in the `encoder_hidden_states`.
317
+ scale (`float`, defaults to 1.0):
318
+ the weight scale of image prompt.
319
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
320
+ The context length of the image features.
321
+ """
322
+
323
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
324
+ super().__init__()
325
+
326
+ if not hasattr(F, "scaled_dot_product_attention"):
327
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
328
+
329
+ self.hidden_size = hidden_size
330
+ self.cross_attention_dim = cross_attention_dim
331
+ self.scale = scale
332
+ self.num_tokens = num_tokens
333
+
334
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
335
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
336
+
337
+ def __call__(
338
+ self,
339
+ attn,
340
+ hidden_states,
341
+ encoder_hidden_states=None,
342
+ attention_mask=None,
343
+ temb=None,
344
+ ):
345
+ # 保存输入的 hidden_states,用于最后的残差连接。
346
+ residual = hidden_states
347
+ # 检查是否有 空间归一化 (spatial normalization)
348
+ if attn.spatial_norm is not None:
349
+ hidden_states = attn.spatial_norm(hidden_states, temb)
350
+
351
+ # hidden_states 可能是一个 4D 张量(比如图像数据),也可能是一个 3D 张量(比如文本数据)
352
+ input_ndim = hidden_states.ndim
353
+ if input_ndim == 4:
354
+ batch_size, channel, height, width = hidden_states.shape
355
+ # 调整其形状为 (batch_size, channel, height * width)
356
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
357
+
358
+ # 选择 encoder_hidden_states 如果有的话,否则使用 hidden_states 作为输入。sequence_length 表示序列长度,通常是时间步或图像的像素数量。
359
+ batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape)
360
+
361
+ # 处理并调整注意力掩码 (attention mask),使其符合 scaled_dot_product_attention 函数的要求。
362
+ if attention_mask is not None:
363
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
364
+ # scaled_dot_product_attention expects attention_mask shape to be
365
+ # (batch, heads, source_length, target_length)
366
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
367
+
368
+ # 对 hidden_states 进行组归一化
369
+ if attn.group_norm is not None:
370
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
371
+
372
+ # 通过线性变换将 hidden_states 映射到query向量
373
+ query = attn.to_q(hidden_states)
374
+
375
+ if encoder_hidden_states is None:
376
+ encoder_hidden_states = hidden_states
377
+ else:
378
+ # 分割 encoder_hidden_states 和 ip_hidden_states
379
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
380
+ encoder_hidden_states, ip_hidden_states = (
381
+ encoder_hidden_states[:, :end_pos, :],
382
+ encoder_hidden_states[:, end_pos:, :],
383
+ )
384
+ if attn.norm_cross:
385
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
386
+
387
+ # 将 encoder_hidden_states 映射为多头自注意力计算中的键和值
388
+ key = attn.to_k(encoder_hidden_states)
389
+ value = attn.to_v(encoder_hidden_states)
390
+
391
+ # 获取每个注意力头的维度
392
+ inner_dim = key.shape[-1]
393
+ head_dim = inner_dim // attn.heads
394
+
395
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
396
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
397
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
398
+
399
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
400
+ # TODO: add support for attn.scale when we move to Torch 2.1
401
+ hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)
402
+ # hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
403
+
404
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
405
+ hidden_states = hidden_states.to(query.dtype)
406
+
407
+ # for ip-adapter
408
+ # 投影 ip_hidden_states 得到其键和值
409
+
410
+ ip_key = self.to_k_ip(ip_hidden_states)
411
+ ip_value = self.to_v_ip(ip_hidden_states)
412
+
413
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
414
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
415
+
416
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
417
+ # TODO: add support for attn.scale when we move to Torch 2.1
418
+ # 注意力计算 得到图像提示的隐藏状态
419
+ ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False)
420
+ # ip_hidden_states = xformers.ops.memory_efficient_attention(query, ip_key, ip_value, attn_bias=None)
421
+
422
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
423
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
424
+
425
+ # 通过给图像提示隐藏状态加权缩放后与原始隐藏状态相加,实现跨域信息融合
426
+ hidden_states = hidden_states + self.scale * ip_hidden_states
427
+
428
+ # linear proj
429
+ hidden_states = attn.to_out[0](hidden_states)
430
+ # dropout
431
+ hidden_states = attn.to_out[1](hidden_states)
432
+
433
+ if input_ndim == 4:
434
+ # 如果输入是 4D 张量(图像数据),则将 hidden_states 转换回原始形状。
435
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
436
+
437
+ if attn.residual_connection:
438
+ # 如果启用了残差连接,则将 residual 添加回 hidden_states
439
+ hidden_states = hidden_states + residual
440
+
441
+ # 对输出进行缩放
442
+ hidden_states = hidden_states / attn.rescale_output_factor
443
+
444
+ return hidden_states
445
+
446
+
447
+ ## for controlnet
448
+
449
+
450
+
451
+
452
+ class CNAttnProcessor:
453
+ r"""
454
+ Default processor for performing attention-related computations.
455
+ """
456
+
457
+ def __init__(self, num_tokens=4):
458
+ self.num_tokens = num_tokens
459
+
460
+ def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs,):
461
+ residual = hidden_states
462
+
463
+ if attn.spatial_norm is not None:
464
+ hidden_states = attn.spatial_norm(hidden_states, temb)
465
+
466
+ input_ndim = hidden_states.ndim
467
+
468
+ if input_ndim == 4:
469
+ batch_size, channel, height, width = hidden_states.shape
470
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
471
+
472
+ batch_size, sequence_length, _ = (
473
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
474
+ )
475
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
476
+
477
+ if attn.group_norm is not None:
478
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
479
+
480
+ query = attn.to_q(hidden_states)
481
+
482
+ if encoder_hidden_states is None:
483
+ encoder_hidden_states = hidden_states
484
+ else:
485
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
486
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
487
+ if attn.norm_cross:
488
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
489
+
490
+ key = attn.to_k(encoder_hidden_states)
491
+ value = attn.to_v(encoder_hidden_states)
492
+
493
+ query = attn.head_to_batch_dim(query)
494
+ key = attn.head_to_batch_dim(key)
495
+ value = attn.head_to_batch_dim(value)
496
+
497
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
498
+ hidden_states = torch.bmm(attention_probs, value)
499
+ hidden_states = attn.batch_to_head_dim(hidden_states)
500
+
501
+ # linear proj
502
+ hidden_states = attn.to_out[0](hidden_states)
503
+ # dropout
504
+ hidden_states = attn.to_out[1](hidden_states)
505
+
506
+ if input_ndim == 4:
507
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
508
+
509
+ if attn.residual_connection:
510
+ hidden_states = hidden_states + residual
511
+
512
+ hidden_states = hidden_states / attn.rescale_output_factor
513
+
514
+ return hidden_states
515
+
516
+
517
+ class CNAttnProcessor2_0:
518
+ r"""
519
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
520
+ """
521
+
522
+ def __init__(self, num_tokens=4):
523
+ if not hasattr(F, "scaled_dot_product_attention"):
524
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
525
+ self.num_tokens = num_tokens
526
+
527
+ def __call__(
528
+ self,
529
+ attn,
530
+ hidden_states,
531
+ encoder_hidden_states=None,
532
+ attention_mask=None,
533
+ temb=None,
534
+ *args,
535
+ **kwargs,
536
+ ):
537
+ residual = hidden_states
538
+
539
+ if attn.spatial_norm is not None:
540
+ hidden_states = attn.spatial_norm(hidden_states, temb)
541
+
542
+ input_ndim = hidden_states.ndim
543
+
544
+ if input_ndim == 4:
545
+ batch_size, channel, height, width = hidden_states.shape
546
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
547
+
548
+ batch_size, sequence_length, _ = (
549
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
550
+ )
551
+
552
+ if attention_mask is not None:
553
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
554
+ # scaled_dot_product_attention expects attention_mask shape to be
555
+ # (batch, heads, source_length, target_length)
556
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
557
+
558
+ if attn.group_norm is not None:
559
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
560
+
561
+ query = attn.to_q(hidden_states)
562
+
563
+ if encoder_hidden_states is None:
564
+ encoder_hidden_states = hidden_states
565
+ else:
566
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
567
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
568
+ if attn.norm_cross:
569
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
570
+
571
+ key = attn.to_k(encoder_hidden_states)
572
+ value = attn.to_v(encoder_hidden_states)
573
+
574
+ inner_dim = key.shape[-1]
575
+ head_dim = inner_dim // attn.heads
576
+
577
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
578
+
579
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
580
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
581
+
582
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
583
+ # TODO: add support for attn.scale when we move to Torch 2.1
584
+ hidden_states = F.scaled_dot_product_attention(
585
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
586
+ )
587
+
588
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
589
+ hidden_states = hidden_states.to(query.dtype)
590
+
591
+ # linear proj
592
+ hidden_states = attn.to_out[0](hidden_states)
593
+ # dropout
594
+ hidden_states = attn.to_out[1](hidden_states)
595
+
596
+ if input_ndim == 4:
597
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
598
+
599
+ if attn.residual_connection:
600
+ hidden_states = hidden_states + residual
601
+
602
+ hidden_states = hidden_states / attn.rescale_output_factor
603
+
604
+ return hidden_states
605
+
606
+
607
+
608
+ class IPAttnProcessor2_02(torch.nn.Module):
609
+ r"""
610
+ Attention processor for IP-Adapater for PyTorch 2.0.
611
+ Args:
612
+ hidden_size (`int`):
613
+ The hidden size of the attention layer.
614
+ cross_attention_dim (`int`):
615
+ The number of channels in the `encoder_hidden_states`.
616
+ scale (`float`, defaults to 1.0):
617
+ the weight scale of image prompt.
618
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
619
+ The context length of the image features.
620
+ """
621
+
622
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
623
+ super().__init__()
624
+
625
+ if not hasattr(F, "scaled_dot_product_attention"):
626
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
627
+
628
+ self.hidden_size = hidden_size
629
+ self.cross_attention_dim = cross_attention_dim
630
+ self.scale = scale
631
+ self.num_tokens = num_tokens
632
+
633
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
634
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
635
+
636
+ def forward(
637
+ self,
638
+ attn,
639
+ hidden_states,
640
+ encoder_hidden_states=None,
641
+ attention_mask=None,
642
+ temb=None,
643
+ ):
644
+ residual = hidden_states
645
+
646
+ if attn.spatial_norm is not None:
647
+ hidden_states = attn.spatial_norm(hidden_states, temb)
648
+
649
+ input_ndim = hidden_states.ndim
650
+
651
+ if input_ndim == 4:
652
+ batch_size, channel, height, width = hidden_states.shape
653
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
654
+
655
+ batch_size, sequence_length, _ = (
656
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
657
+ )
658
+
659
+ if attention_mask is not None:
660
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
661
+ # scaled_dot_product_attention expects attention_mask shape to be
662
+ # (batch, heads, source_length, target_length)
663
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
664
+
665
+ if attn.group_norm is not None:
666
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
667
+
668
+ query = attn.to_q(hidden_states)
669
+
670
+ if encoder_hidden_states is None:
671
+ encoder_hidden_states = hidden_states
672
+ else:
673
+ # get encoder_hidden_states, ip_hidden_states
674
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
675
+ encoder_hidden_states, ip_hidden_states = (
676
+ encoder_hidden_states[:, :end_pos, :],
677
+ encoder_hidden_states[:, end_pos:, :],
678
+ )
679
+ if attn.norm_cross:
680
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
681
+
682
+ key = attn.to_k(encoder_hidden_states)
683
+ value = attn.to_v(encoder_hidden_states)
684
+
685
+ inner_dim = key.shape[-1]
686
+ head_dim = inner_dim // attn.heads
687
+
688
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
689
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
690
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
691
+
692
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
693
+ # hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)
694
+
695
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
696
+ hidden_states = hidden_states.to(query.dtype)
697
+
698
+ # hidden_states = memory_efficient_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0)
699
+
700
+ # for ip-adapter
701
+ ip_key = self.to_k_ip(ip_hidden_states)
702
+ ip_value = self.to_v_ip(ip_hidden_states)
703
+
704
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
705
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
706
+
707
+ # ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False)
708
+ # ip_hidden_states = xformers.ops.memory_efficient_attention(query, ip_key, ip_value, None)
709
+ ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
710
+
711
+ with torch.no_grad():
712
+ self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
713
+ #print(self.attn_map.shape)
714
+
715
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
716
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
717
+
718
+ # region control
719
+ if len(region_control.prompt_image_conditioning) == 1:
720
+ region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
721
+ if region_mask is not None:
722
+ query = query.reshape([-1, query.shape[-2], query.shape[-1]])
723
+ h, w = region_mask.shape[:2]
724
+ ratio = (h * w / query.shape[1]) ** 0.5
725
+ mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
726
+ else:
727
+ mask = torch.ones_like(ip_hidden_states)
728
+ ip_hidden_states = ip_hidden_states * mask
729
+ # ip_hidden_states = memory_efficient_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0)
730
+
731
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * (ip_key.shape[-1] // attn.heads))
732
+
733
+ hidden_states = hidden_states + self.scale * ip_hidden_states
734
+
735
+ # linear proj
736
+ hidden_states = attn.to_out[0](hidden_states)
737
+ # dropout
738
+ hidden_states = attn.to_out[1](hidden_states)
739
+
740
+ if input_ndim == 4:
741
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
742
+
743
+ if attn.residual_connection:
744
+ hidden_states = hidden_states + residual
745
+
746
+ hidden_states = hidden_states / attn.rescale_output_factor
747
+
748
+ return hidden_states
749
+
750
+ def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
751
+ # TODO attention_mask
752
+ query = query.contiguous()
753
+ key = key.contiguous()
754
+ value = value.contiguous()
755
+ hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
756
+ # hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
757
+ return hidden_states
758
+
759
+
760
+ class IPAttnProcessor2_00(torch.nn.Module):
761
+ r"""
762
+ Attention processor for IP-Adapater for PyTorch 2.0.
763
+ Args:
764
+ hidden_size (`int`):
765
+ The hidden size of the attention layer.
766
+ cross_attention_dim (`int`):
767
+ The number of channels in the `encoder_hidden_states`.
768
+ scale (`float`, defaults to 1.0):
769
+ the weight scale of image prompt.
770
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
771
+ The context length of the image features.
772
+ """
773
+
774
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
775
+ super().__init__()
776
+
777
+ if not hasattr(F, "scaled_dot_product_attention"):
778
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
779
+
780
+ self.hidden_size = hidden_size
781
+ self.cross_attention_dim = cross_attention_dim
782
+ self.scale = scale
783
+ self.num_tokens = num_tokens
784
+
785
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
786
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
787
+
788
+ def __call__(
789
+ self,
790
+ attn,
791
+ hidden_states,
792
+ encoder_hidden_states=None,
793
+ attention_mask=None,
794
+ temb=None,
795
+ ):
796
+ residual = hidden_states
797
+
798
+ if attn.spatial_norm is not None:
799
+ hidden_states = attn.spatial_norm(hidden_states, temb)
800
+
801
+ input_ndim = hidden_states.ndim
802
+
803
+ if input_ndim == 4:
804
+ batch_size, channel, height, width = hidden_states.shape
805
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
806
+
807
+ batch_size, sequence_length, _ = (
808
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
809
+ )
810
+
811
+ if attention_mask is not None:
812
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
813
+ # scaled_dot_product_attention expects attention_mask shape to be
814
+ # (batch, heads, source_length, target_length)
815
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
816
+
817
+ if attn.group_norm is not None:
818
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
819
+
820
+ query = attn.to_q(hidden_states)
821
+
822
+ if encoder_hidden_states is None:
823
+ encoder_hidden_states = hidden_states
824
+ else:
825
+ # get encoder_hidden_states, ip_hidden_states
826
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
827
+ encoder_hidden_states, ip_hidden_states = (
828
+ encoder_hidden_states[:, :end_pos, :],
829
+ encoder_hidden_states[:, end_pos:, :],
830
+ )
831
+ if attn.norm_cross:
832
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
833
+
834
+ key = attn.to_k(encoder_hidden_states)
835
+ value = attn.to_v(encoder_hidden_states)
836
+
837
+ inner_dim = key.shape[-1]
838
+ head_dim = inner_dim // attn.heads
839
+
840
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
841
+
842
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
843
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
844
+
845
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
846
+ # TODO: add support for attn.scale when we move to Torch 2.1
847
+ hidden_states = F.scaled_dot_product_attention(
848
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
849
+ )
850
+
851
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
852
+ hidden_states = hidden_states.to(query.dtype)
853
+
854
+ # for ip-adapter
855
+ ip_key = self.to_k_ip(ip_hidden_states)
856
+ ip_value = self.to_v_ip(ip_hidden_states)
857
+
858
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
859
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
860
+
861
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
862
+ # TODO: add support for attn.scale when we move to Torch 2.1
863
+ ip_hidden_states = F.scaled_dot_product_attention(
864
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
865
+ )
866
+
867
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
868
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
869
+
870
+ hidden_states = hidden_states + self.scale * ip_hidden_states
871
+
872
+ # linear proj
873
+ hidden_states = attn.to_out[0](hidden_states)
874
+ # dropout
875
+ hidden_states = attn.to_out[1](hidden_states)
876
+
877
+ if input_ndim == 4:
878
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
879
+
880
+ if attn.residual_connection:
881
+ hidden_states = hidden_states + residual
882
+
883
+ hidden_states = hidden_states / attn.rescale_output_factor
884
+
885
+ return hidden_states
886
+
887
+
888
+ ## for controlnet
utils/callbacks.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List
2
+
3
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
4
+ from diffusers.utils import CONFIG_NAME
5
+
6
+
7
+ class PipelineCallback(ConfigMixin):
8
+ """
9
+ Base class for all the official callbacks used in a pipeline. This class provides a structure for implementing
10
+ custom callbacks and ensures that all callbacks have a consistent interface.
11
+
12
+ Please implement the following:
13
+ `tensor_inputs`: This should return a list of tensor inputs specific to your callback. You will only be able to
14
+ include
15
+ variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
16
+ `callback_fn`: This method defines the core functionality of your callback.
17
+ """
18
+
19
+ config_name = CONFIG_NAME
20
+
21
+ @register_to_config
22
+ def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None):
23
+ super().__init__()
24
+
25
+ if (cutoff_step_ratio is None and cutoff_step_index is None) or (
26
+ cutoff_step_ratio is not None and cutoff_step_index is not None
27
+ ):
28
+ raise ValueError("Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.")
29
+
30
+ if cutoff_step_ratio is not None and (
31
+ not isinstance(cutoff_step_ratio, float) or not (0.0 <= cutoff_step_ratio <= 1.0)
32
+ ):
33
+ raise ValueError("cutoff_step_ratio must be a float between 0.0 and 1.0.")
34
+
35
+ @property
36
+ def tensor_inputs(self) -> List[str]:
37
+ raise NotImplementedError(f"You need to set the attribute `tensor_inputs` for {self.__class__}")
38
+
39
+ def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]:
40
+ raise NotImplementedError(f"You need to implement the method `callback_fn` for {self.__class__}")
41
+
42
+ def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
43
+ return self.callback_fn(pipeline, step_index, timestep, callback_kwargs)
44
+
45
+
46
+ class MultiPipelineCallbacks:
47
+ """
48
+ This class is designed to handle multiple pipeline callbacks. It accepts a list of PipelineCallback objects and
49
+ provides a unified interface for calling all of them.
50
+ """
51
+
52
+ def __init__(self, callbacks: List[PipelineCallback]):
53
+ self.callbacks = callbacks
54
+
55
+ @property
56
+ def tensor_inputs(self) -> List[str]:
57
+ return [input for callback in self.callbacks for input in callback.tensor_inputs]
58
+
59
+ def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
60
+ """
61
+ Calls all the callbacks in order with the given arguments and returns the final callback_kwargs.
62
+ """
63
+ for callback in self.callbacks:
64
+ callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs)
65
+
66
+ return callback_kwargs
67
+
68
+
69
+ class SDCFGCutoffCallback(PipelineCallback):
70
+ """
71
+ Callback function for Stable Diffusion Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
72
+ `cutoff_step_index`), this callback will disable the CFG.
73
+
74
+ Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
75
+ """
76
+
77
+ tensor_inputs = ["prompt_embeds"]
78
+
79
+ def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
80
+ cutoff_step_ratio = self.config.cutoff_step_ratio
81
+ cutoff_step_index = self.config.cutoff_step_index
82
+
83
+ # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
84
+ cutoff_step = (
85
+ cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
86
+ )
87
+
88
+ if step_index == cutoff_step:
89
+ prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
90
+ prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
91
+
92
+ pipeline._guidance_scale = 0.0
93
+
94
+ callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
95
+ return callback_kwargs
96
+
97
+
98
+ class SDXLCFGCutoffCallback(PipelineCallback):
99
+ """
100
+ Callback function for Stable Diffusion XL Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
101
+ `cutoff_step_index`), this callback will disable the CFG.
102
+
103
+ Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
104
+ """
105
+
106
+ tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"]
107
+
108
+ def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
109
+ cutoff_step_ratio = self.config.cutoff_step_ratio
110
+ cutoff_step_index = self.config.cutoff_step_index
111
+
112
+ # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
113
+ cutoff_step = (
114
+ cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
115
+ )
116
+
117
+ if step_index == cutoff_step:
118
+ prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
119
+ prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
120
+
121
+ add_text_embeds = callback_kwargs[self.tensor_inputs[1]]
122
+ add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens
123
+
124
+ add_time_ids = callback_kwargs[self.tensor_inputs[2]]
125
+ add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector
126
+
127
+ pipeline._guidance_scale = 0.0
128
+
129
+ callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
130
+ callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
131
+ callback_kwargs[self.tensor_inputs[2]] = add_time_ids
132
+ return callback_kwargs
133
+
134
+
135
+ class IPAdapterScaleCutoffCallback(PipelineCallback):
136
+ """
137
+ Callback function for any pipeline that inherits `IPAdapterMixin`. After certain number of steps (set by
138
+ `cutoff_step_ratio` or `cutoff_step_index`), this callback will set the IP Adapter scale to `0.0`.
139
+
140
+ Note: This callback mutates the IP Adapter attention processors by setting the scale to 0.0 after the cutoff step.
141
+ """
142
+
143
+ tensor_inputs = []
144
+
145
+ def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
146
+ cutoff_step_ratio = self.config.cutoff_step_ratio
147
+ cutoff_step_index = self.config.cutoff_step_index
148
+
149
+ # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
150
+ cutoff_step = (
151
+ cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
152
+ )
153
+
154
+ if step_index == cutoff_step:
155
+ pipeline.set_ip_adapter_scale(0.0)
156
+ return callback_kwargs
utils/controlnet_xs.py ADDED
@@ -0,0 +1,2066 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from math import gcd
16
+ from typing import Any, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.utils.checkpoint
20
+ from torch import Tensor, nn
21
+ from torch.nn import functional as F
22
+
23
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
24
+ from diffusers.utils import BaseOutput, is_torch_version, logging
25
+ from diffusers.utils.torch_utils import apply_freeu
26
+ from diffusers.models.attention_processor import (
27
+ ADDED_KV_ATTENTION_PROCESSORS,
28
+ CROSS_ATTENTION_PROCESSORS,
29
+ Attention,
30
+ AttentionProcessor,
31
+ AttnAddedKVProcessor,
32
+ AttnProcessor,
33
+ )
34
+ #from diffusers.models.controlnet import ControlNetConditioningEmbedding
35
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
36
+ from diffusers.models.modeling_utils import ModelMixin
37
+ from diffusers.models.unets.unet_2d_blocks import (
38
+ CrossAttnDownBlock2D,
39
+ CrossAttnUpBlock2D,
40
+ Downsample2D,
41
+ ResnetBlock2D,
42
+ Transformer2DModel,
43
+ Upsample2D,
44
+ )
45
+
46
+ from utils.modules import UNetMidBlock2DCrossAttn
47
+
48
+ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
49
+ from diffusers.loaders import UNet2DConditionLoadersMixin
50
+
51
+ # from modules.unet_2d_condition import UNet2DConditionModel
52
+ # from modules.unet import UNet2DConditionLoadersMixin
53
+
54
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
+
56
+ class ControlNetConditioningEmbedding(nn.Module):
57
+ """
58
+ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
59
+ [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
60
+ training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
61
+ convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
62
+ (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
63
+ model) to encode image-space conditions ... into feature maps ..."
64
+ """
65
+
66
+ def __init__(
67
+ self,
68
+ conditioning_embedding_channels: int,
69
+ conditioning_channels: int = 3,
70
+ block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
71
+ ):
72
+ super().__init__()
73
+
74
+ self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
75
+
76
+ self.blocks = nn.ModuleList([])
77
+
78
+ for i in range(len(block_out_channels) - 1):
79
+ channel_in = block_out_channels[i]
80
+ channel_out = block_out_channels[i + 1]
81
+ self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
82
+
83
+ stride = 1 if conditioning_channels == 4 else 2
84
+ self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=stride))
85
+
86
+ self.conv_out = zero_module(
87
+ nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
88
+ )
89
+
90
+ def forward(self, conditioning):
91
+ embedding = self.conv_in(conditioning)
92
+ embedding = F.silu(embedding)
93
+
94
+ for block in self.blocks:
95
+ embedding = block(embedding)
96
+ embedding = F.silu(embedding)
97
+
98
+ embedding = self.conv_out(embedding)
99
+
100
+ return embedding
101
+
102
+
103
+ @dataclass
104
+ class ControlNetXSOutput(BaseOutput):
105
+ """
106
+ The output of [`UNetControlNetXSModel`].
107
+
108
+ Args:
109
+ sample (`Tensor` of shape `(batch_size, num_channels, height, width)`):
110
+ The output of the `UNetControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base
111
+ model output, but is already the final output.
112
+ """
113
+
114
+ sample: Tensor = None
115
+
116
+
117
+ class DownBlockControlNetXSAdapter(nn.Module):
118
+ """Components that together with corresponding components from the base model will form a
119
+ `ControlNetXSCrossAttnDownBlock2D`"""
120
+
121
+ def __init__(
122
+ self,
123
+ resnets: nn.ModuleList,
124
+ base_to_ctrl: nn.ModuleList,
125
+ ctrl_to_base: nn.ModuleList,
126
+ attentions: Optional[nn.ModuleList] = None,
127
+ downsampler: Optional[nn.Conv2d] = None,
128
+ ):
129
+ super().__init__()
130
+ self.resnets = resnets
131
+ self.base_to_ctrl = base_to_ctrl
132
+ self.ctrl_to_base = ctrl_to_base
133
+ self.attentions = attentions
134
+ self.downsamplers = downsampler
135
+
136
+
137
+ class MidBlockControlNetXSAdapter(nn.Module):
138
+ """Components that together with corresponding components from the base model will form a
139
+ `ControlNetXSCrossAttnMidBlock2D`"""
140
+
141
+ def __init__(self, midblock: UNetMidBlock2DCrossAttn, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList):
142
+ super().__init__()
143
+ self.midblock = midblock
144
+ self.base_to_ctrl = base_to_ctrl
145
+ self.ctrl_to_base = ctrl_to_base
146
+
147
+
148
+ class UpBlockControlNetXSAdapter(nn.Module):
149
+ """Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnUpBlock2D`"""
150
+
151
+ def __init__(self, ctrl_to_base: nn.ModuleList):
152
+ super().__init__()
153
+ self.ctrl_to_base = ctrl_to_base
154
+
155
+
156
+ def get_down_block_adapter(
157
+ base_in_channels: int,
158
+ base_out_channels: int,
159
+ ctrl_in_channels: int,
160
+ ctrl_out_channels: int,
161
+ temb_channels: int,
162
+ max_norm_num_groups: Optional[int] = 32,
163
+ has_crossattn=True,
164
+ transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
165
+ num_attention_heads: Optional[int] = 1,
166
+ cross_attention_dim: Optional[int] = 1024,
167
+ add_downsample: bool = True,
168
+ upcast_attention: Optional[bool] = False,
169
+ ):
170
+ num_layers = 2 # only support sd + sdxl
171
+
172
+ resnets = []
173
+ attentions = []
174
+ ctrl_to_base = []
175
+ base_to_ctrl = []
176
+
177
+ if isinstance(transformer_layers_per_block, int):
178
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
179
+
180
+ for i in range(num_layers):
181
+ base_in_channels = base_in_channels if i == 0 else base_out_channels
182
+ ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
183
+
184
+ # Before the resnet/attention application, information is concatted from base to control.
185
+ # Concat doesn't require change in number of channels
186
+ base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
187
+
188
+ resnets.append(
189
+ ResnetBlock2D(
190
+ in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
191
+ out_channels=ctrl_out_channels,
192
+ temb_channels=temb_channels,
193
+ groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=max_norm_num_groups),
194
+ groups_out=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
195
+ eps=1e-5,
196
+ )
197
+ )
198
+
199
+ if has_crossattn:
200
+ attentions.append(
201
+ Transformer2DModel(
202
+ num_attention_heads,
203
+ ctrl_out_channels // num_attention_heads,
204
+ in_channels=ctrl_out_channels,
205
+ num_layers=transformer_layers_per_block[i],
206
+ cross_attention_dim=cross_attention_dim,
207
+ use_linear_projection=True,
208
+ upcast_attention=upcast_attention,
209
+ norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
210
+ )
211
+ )
212
+
213
+ # After the resnet/attention application, information is added from control to base
214
+ # Addition requires change in number of channels
215
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
216
+
217
+ if add_downsample:
218
+ # Before the downsampler application, information is concatted from base to control
219
+ # Concat doesn't require change in number of channels
220
+ base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
221
+
222
+ downsamplers = Downsample2D(
223
+ ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
224
+ )
225
+
226
+ # After the downsampler application, information is added from control to base
227
+ # Addition requires change in number of channels
228
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
229
+ else:
230
+ downsamplers = None
231
+
232
+ down_block_components = DownBlockControlNetXSAdapter(
233
+ resnets=nn.ModuleList(resnets),
234
+ base_to_ctrl=nn.ModuleList(base_to_ctrl),
235
+ ctrl_to_base=nn.ModuleList(ctrl_to_base),
236
+ )
237
+
238
+ if has_crossattn:
239
+ down_block_components.attentions = nn.ModuleList(attentions)
240
+ if downsamplers is not None:
241
+ down_block_components.downsamplers = downsamplers
242
+
243
+ return down_block_components
244
+
245
+
246
+ def get_mid_block_adapter(
247
+ base_channels: int,
248
+ ctrl_channels: int,
249
+ temb_channels: Optional[int] = None,
250
+ max_norm_num_groups: Optional[int] = 32,
251
+ transformer_layers_per_block: int = 1,
252
+ num_attention_heads: Optional[int] = 1,
253
+ cross_attention_dim: Optional[int] = 1024,
254
+ upcast_attention: bool = False,
255
+ ):
256
+ # Before the midblock application, information is concatted from base to control.
257
+ # Concat doesn't require change in number of channels
258
+ base_to_ctrl = make_zero_conv(base_channels, base_channels)
259
+
260
+ midblock = UNetMidBlock2DCrossAttn(
261
+ transformer_layers_per_block=transformer_layers_per_block,
262
+ in_channels=ctrl_channels + base_channels,
263
+ out_channels=ctrl_channels,
264
+ temb_channels=temb_channels,
265
+ # number or norm groups must divide both in_channels and out_channels
266
+ resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), max_norm_num_groups),
267
+ cross_attention_dim=cross_attention_dim,
268
+ num_attention_heads=num_attention_heads,
269
+ use_linear_projection=True,
270
+ upcast_attention=upcast_attention,
271
+ )
272
+
273
+ # After the midblock application, information is added from control to base
274
+ # Addition requires change in number of channels
275
+ ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
276
+
277
+ return MidBlockControlNetXSAdapter(base_to_ctrl=base_to_ctrl, midblock=midblock, ctrl_to_base=ctrl_to_base)
278
+
279
+
280
+ def get_up_block_adapter(
281
+ out_channels: int,
282
+ prev_output_channel: int,
283
+ ctrl_skip_channels: List[int],
284
+ ):
285
+ ctrl_to_base = []
286
+ num_layers = 3 # only support sd + sdxl
287
+ for i in range(num_layers):
288
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
289
+ ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
290
+
291
+ return UpBlockControlNetXSAdapter(ctrl_to_base=nn.ModuleList(ctrl_to_base))
292
+
293
+
294
+ class ControlNetXSAdapter(ModelMixin, ConfigMixin):
295
+ r"""
296
+ A `ControlNetXSAdapter` model. To use it, pass it into a `UNetControlNetXSModel` (together with a
297
+ `UNet2DConditionModel` base model).
298
+
299
+ This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
300
+ methods implemented for all models (such as downloading or saving).
301
+
302
+ Like `UNetControlNetXSModel`, `ControlNetXSAdapter` is compatible with StableDiffusion and StableDiffusion-XL. It's
303
+ default parameters are compatible with StableDiffusion.
304
+
305
+ Parameters:
306
+ conditioning_channels (`int`, defaults to 3):
307
+ Number of channels of conditioning input (e.g. an image)
308
+ conditioning_channel_order (`str`, defaults to `"rgb"`):
309
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
310
+ conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
311
+ The tuple of output channels for each block in the `controlnet_cond_embedding` layer.
312
+ time_embedding_mix (`float`, defaults to 1.0):
313
+ If 0, then only the control adapters's time embedding is used. If 1, then only the base unet's time
314
+ embedding is used. Otherwise, both are combined.
315
+ learn_time_embedding (`bool`, defaults to `False`):
316
+ Whether a time embedding should be learned. If yes, `UNetControlNetXSModel` will combine the time
317
+ embeddings of the base model and the control adapter. If no, `UNetControlNetXSModel` will use the base
318
+ model's time embedding.
319
+ num_attention_heads (`list[int]`, defaults to `[4]`):
320
+ The number of attention heads.
321
+ block_out_channels (`list[int]`, defaults to `[4, 8, 16, 16]`):
322
+ The tuple of output channels for each block.
323
+ base_block_out_channels (`list[int]`, defaults to `[320, 640, 1280, 1280]`):
324
+ The tuple of output channels for each block in the base unet.
325
+ cross_attention_dim (`int`, defaults to 1024):
326
+ The dimension of the cross attention features.
327
+ down_block_types (`list[str]`, defaults to `["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]`):
328
+ The tuple of downsample blocks to use.
329
+ sample_size (`int`, defaults to 96):
330
+ Height and width of input/output sample.
331
+ transformer_layers_per_block (`Union[int, Tuple[int]]`, defaults to 1):
332
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
333
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
334
+ upcast_attention (`bool`, defaults to `True`):
335
+ Whether the attention computation should always be upcasted.
336
+ max_norm_num_groups (`int`, defaults to 32):
337
+ Maximum number of groups in group normal. The actual number will the the largest divisor of the respective
338
+ channels, that is <= max_norm_num_groups.
339
+ """
340
+
341
+ @register_to_config
342
+ def __init__(
343
+ self,
344
+ conditioning_channels: int = 3,
345
+ conditioning_channel_order: str = "rgb",
346
+ conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
347
+ time_embedding_mix: float = 1.0,
348
+ learn_time_embedding: bool = False,
349
+ num_attention_heads: Union[int, Tuple[int]] = 4,
350
+ block_out_channels: Tuple[int] = (4, 8, 16, 16),
351
+ base_block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
352
+ cross_attention_dim: int = 1024,
353
+ down_block_types: Tuple[str] = (
354
+ "CrossAttnDownBlock2D",
355
+ "CrossAttnDownBlock2D",
356
+ "CrossAttnDownBlock2D",
357
+ "DownBlock2D",
358
+ ),
359
+ sample_size: Optional[int] = 96,
360
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
361
+ upcast_attention: bool = True,
362
+ max_norm_num_groups: int = 32,
363
+ ):
364
+ super().__init__()
365
+
366
+ time_embedding_input_dim = base_block_out_channels[0]
367
+ time_embedding_dim = base_block_out_channels[0] * 4
368
+
369
+ # Check inputs
370
+ if conditioning_channel_order not in ["rgb", "bgr"]:
371
+ raise ValueError(f"unknown `conditioning_channel_order`: {conditioning_channel_order}")
372
+
373
+ if len(block_out_channels) != len(down_block_types):
374
+ raise ValueError(
375
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
376
+ )
377
+
378
+ if not isinstance(transformer_layers_per_block, (list, tuple)):
379
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
380
+ if not isinstance(cross_attention_dim, (list, tuple)):
381
+ cross_attention_dim = [cross_attention_dim] * len(down_block_types)
382
+ # see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why `ControlNetXSAdapter` takes `num_attention_heads` instead of `attention_head_dim`
383
+ if not isinstance(num_attention_heads, (list, tuple)):
384
+ num_attention_heads = [num_attention_heads] * len(down_block_types)
385
+
386
+ if len(num_attention_heads) != len(down_block_types):
387
+ raise ValueError(
388
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
389
+ )
390
+
391
+ # 5 - Create conditioning hint embedding
392
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
393
+ conditioning_embedding_channels=block_out_channels[0],
394
+ block_out_channels=conditioning_embedding_out_channels,
395
+ conditioning_channels=conditioning_channels,
396
+ )
397
+
398
+ # time
399
+ if learn_time_embedding:
400
+ self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim)
401
+ else:
402
+ self.time_embedding = None
403
+
404
+ self.down_blocks = nn.ModuleList([])
405
+ self.up_connections = nn.ModuleList([])
406
+
407
+ # input
408
+ self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
409
+ self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0])
410
+
411
+ # down
412
+ base_out_channels = base_block_out_channels[0]
413
+ ctrl_out_channels = block_out_channels[0]
414
+ for i, down_block_type in enumerate(down_block_types):
415
+ base_in_channels = base_out_channels
416
+ base_out_channels = base_block_out_channels[i]
417
+ ctrl_in_channels = ctrl_out_channels
418
+ ctrl_out_channels = block_out_channels[i]
419
+ has_crossattn = "CrossAttn" in down_block_type
420
+ is_final_block = i == len(down_block_types) - 1
421
+
422
+ self.down_blocks.append(
423
+ get_down_block_adapter(
424
+ base_in_channels=base_in_channels,
425
+ base_out_channels=base_out_channels,
426
+ ctrl_in_channels=ctrl_in_channels,
427
+ ctrl_out_channels=ctrl_out_channels,
428
+ temb_channels=time_embedding_dim,
429
+ max_norm_num_groups=max_norm_num_groups,
430
+ has_crossattn=has_crossattn,
431
+ transformer_layers_per_block=transformer_layers_per_block[i],
432
+ num_attention_heads=num_attention_heads[i],
433
+ cross_attention_dim=cross_attention_dim[i],
434
+ add_downsample=not is_final_block,
435
+ upcast_attention=upcast_attention,
436
+ )
437
+ )
438
+
439
+ # mid
440
+ self.mid_block = get_mid_block_adapter(
441
+ base_channels=base_block_out_channels[-1],
442
+ ctrl_channels=block_out_channels[-1],
443
+ temb_channels=time_embedding_dim,
444
+ transformer_layers_per_block=transformer_layers_per_block[-1],
445
+ num_attention_heads=num_attention_heads[-1],
446
+ cross_attention_dim=cross_attention_dim[-1],
447
+ upcast_attention=upcast_attention,
448
+ )
449
+
450
+ # up
451
+ # The skip connection channels are the output of the conv_in and of all the down subblocks
452
+ ctrl_skip_channels = [block_out_channels[0]]
453
+ for i, out_channels in enumerate(block_out_channels):
454
+ number_of_subblocks = (
455
+ 3 if i < len(block_out_channels) - 1 else 2
456
+ ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
457
+ ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
458
+
459
+ reversed_base_block_out_channels = list(reversed(base_block_out_channels))
460
+
461
+ base_out_channels = reversed_base_block_out_channels[0]
462
+ for i in range(len(down_block_types)):
463
+ prev_base_output_channel = base_out_channels
464
+ base_out_channels = reversed_base_block_out_channels[i]
465
+ ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
466
+
467
+ self.up_connections.append(
468
+ get_up_block_adapter(
469
+ out_channels=base_out_channels,
470
+ prev_output_channel=prev_base_output_channel,
471
+ ctrl_skip_channels=ctrl_skip_channels_,
472
+ )
473
+ )
474
+
475
+ @classmethod
476
+ def from_unet(
477
+ cls,
478
+ unet: UNet2DConditionModel,
479
+ size_ratio: Optional[float] = None,
480
+ block_out_channels: Optional[List[int]] = None,
481
+ num_attention_heads: Optional[List[int]] = None,
482
+ learn_time_embedding: bool = False,
483
+ time_embedding_mix: int = 1.0,
484
+ conditioning_channels: int = 3,
485
+ conditioning_channel_order: str = "rgb",
486
+ conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
487
+ ):
488
+ r"""
489
+ Instantiate a [`ControlNetXSAdapter`] from a [`UNet2DConditionModel`].
490
+
491
+ Parameters:
492
+ unet (`UNet2DConditionModel`):
493
+ The UNet model we want to control. The dimensions of the ControlNetXSAdapter will be adapted to it.
494
+ size_ratio (float, *optional*, defaults to `None`):
495
+ When given, block_out_channels is set to a fraction of the base model's block_out_channels. Either this
496
+ or `block_out_channels` must be given.
497
+ block_out_channels (`List[int]`, *optional*, defaults to `None`):
498
+ Down blocks output channels in control model. Either this or `size_ratio` must be given.
499
+ num_attention_heads (`List[int]`, *optional*, defaults to `None`):
500
+ The dimension of the attention heads. The naming seems a bit confusing and it is, see
501
+ https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
502
+ learn_time_embedding (`bool`, defaults to `False`):
503
+ Whether the `ControlNetXSAdapter` should learn a time embedding.
504
+ time_embedding_mix (`float`, defaults to 1.0):
505
+ If 0, then only the control adapter's time embedding is used. If 1, then only the base unet's time
506
+ embedding is used. Otherwise, both are combined.
507
+ conditioning_channels (`int`, defaults to 3):
508
+ Number of channels of conditioning input (e.g. an image)
509
+ conditioning_channel_order (`str`, defaults to `"rgb"`):
510
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
511
+ conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`):
512
+ The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
513
+ """
514
+
515
+ # Check input
516
+ fixed_size = block_out_channels is not None
517
+ relative_size = size_ratio is not None
518
+ if not (fixed_size ^ relative_size):
519
+ raise ValueError(
520
+ "Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing)."
521
+ )
522
+
523
+ # Create model
524
+ block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels]
525
+ if num_attention_heads is None:
526
+ # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
527
+ num_attention_heads = unet.config.attention_head_dim
528
+
529
+ model = cls(
530
+ conditioning_channels=conditioning_channels,
531
+ conditioning_channel_order=conditioning_channel_order,
532
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
533
+ time_embedding_mix=time_embedding_mix,
534
+ learn_time_embedding=learn_time_embedding,
535
+ num_attention_heads=num_attention_heads,
536
+ block_out_channels=block_out_channels,
537
+ base_block_out_channels=unet.config.block_out_channels,
538
+ cross_attention_dim=unet.config.cross_attention_dim,
539
+ down_block_types=unet.config.down_block_types,
540
+ sample_size=unet.config.sample_size,
541
+ transformer_layers_per_block=unet.config.transformer_layers_per_block,
542
+ upcast_attention=unet.config.upcast_attention,
543
+ max_norm_num_groups=unet.config.norm_num_groups,
544
+ )
545
+
546
+ # ensure that the ControlNetXSAdapter is the same dtype as the UNet2DConditionModel
547
+ model.to(unet.dtype)
548
+
549
+ return model
550
+
551
+ def forward(self, *args, **kwargs):
552
+ raise ValueError(
553
+ "A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel."
554
+ )
555
+
556
+
557
+ class UNetControlNetXSModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
558
+ r"""
559
+ A UNet fused with a ControlNet-XS adapter model
560
+
561
+ This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
562
+ methods implemented for all models (such as downloading or saving).
563
+
564
+ `UNetControlNetXSModel` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are
565
+ compatible with StableDiffusion.
566
+
567
+ It's parameters are either passed to the underlying `UNet2DConditionModel` or used exactly like in
568
+ `ControlNetXSAdapter` . See their documentation for details.
569
+ """
570
+
571
+ _supports_gradient_checkpointing = True
572
+
573
+ @register_to_config
574
+ def __init__(
575
+ self,
576
+ # unet configs
577
+ sample_size: Optional[int] = 96,
578
+ down_block_types: Tuple[str] = (
579
+ "CrossAttnDownBlock2D",
580
+ "CrossAttnDownBlock2D",
581
+ "CrossAttnDownBlock2D",
582
+ "DownBlock2D",
583
+ ),
584
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
585
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
586
+ norm_num_groups: Optional[int] = 32,
587
+ cross_attention_dim: Union[int, Tuple[int]] = 1024,
588
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
589
+ num_attention_heads: Union[int, Tuple[int]] = 8,
590
+ addition_embed_type: Optional[str] = None,
591
+ addition_time_embed_dim: Optional[int] = None,
592
+ upcast_attention: bool = True,
593
+ time_cond_proj_dim: Optional[int] = None,
594
+ projection_class_embeddings_input_dim: Optional[int] = None,
595
+ # additional controlnet configs
596
+ time_embedding_mix: float = 1.0,
597
+ ctrl_conditioning_channels: int = 3,
598
+ ctrl_conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
599
+ ctrl_conditioning_channel_order: str = "rgb",
600
+ ctrl_learn_time_embedding: bool = False,
601
+ ctrl_block_out_channels: Tuple[int] = (4, 8, 16, 16),
602
+ ctrl_num_attention_heads: Union[int, Tuple[int]] = 4,
603
+ ctrl_max_norm_num_groups: int = 32,
604
+ ):
605
+ super().__init__()
606
+
607
+ if time_embedding_mix < 0 or time_embedding_mix > 1:
608
+ raise ValueError("`time_embedding_mix` needs to be between 0 and 1.")
609
+ if time_embedding_mix < 1 and not ctrl_learn_time_embedding:
610
+ raise ValueError("To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`")
611
+
612
+ if addition_embed_type is not None and addition_embed_type != "text_time":
613
+ raise ValueError(
614
+ "As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`."
615
+ )
616
+
617
+ if not isinstance(transformer_layers_per_block, (list, tuple)):
618
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
619
+ if not isinstance(cross_attention_dim, (list, tuple)):
620
+ cross_attention_dim = [cross_attention_dim] * len(down_block_types)
621
+ if not isinstance(num_attention_heads, (list, tuple)):
622
+ num_attention_heads = [num_attention_heads] * len(down_block_types)
623
+ if not isinstance(ctrl_num_attention_heads, (list, tuple)):
624
+ ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types)
625
+
626
+ base_num_attention_heads = num_attention_heads
627
+
628
+ self.in_channels = 4
629
+
630
+ # # Input
631
+ self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
632
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
633
+ conditioning_embedding_channels=ctrl_block_out_channels[0],
634
+ block_out_channels=ctrl_conditioning_embedding_out_channels,
635
+ conditioning_channels=ctrl_conditioning_channels,
636
+ )
637
+ self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1)
638
+ self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0])
639
+
640
+ # # Time
641
+ time_embed_input_dim = block_out_channels[0]
642
+ time_embed_dim = block_out_channels[0] * 4
643
+
644
+ self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0)
645
+ self.base_time_embedding = TimestepEmbedding(
646
+ time_embed_input_dim,
647
+ time_embed_dim,
648
+ cond_proj_dim=time_cond_proj_dim,
649
+ )
650
+ self.ctrl_time_embedding = TimestepEmbedding(in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim)
651
+
652
+ if addition_embed_type is None:
653
+ self.base_add_time_proj = None
654
+ self.base_add_embedding = None
655
+ else:
656
+ self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
657
+ self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
658
+
659
+ # # Create down blocks
660
+ down_blocks = []
661
+ base_out_channels = block_out_channels[0]
662
+ ctrl_out_channels = ctrl_block_out_channels[0]
663
+ for i, down_block_type in enumerate(down_block_types):
664
+ base_in_channels = base_out_channels
665
+ base_out_channels = block_out_channels[i]
666
+ ctrl_in_channels = ctrl_out_channels
667
+ ctrl_out_channels = ctrl_block_out_channels[i]
668
+ has_crossattn = "CrossAttn" in down_block_type
669
+ is_final_block = i == len(down_block_types) - 1
670
+
671
+ down_blocks.append(
672
+ ControlNetXSCrossAttnDownBlock2D(
673
+ base_in_channels=base_in_channels,
674
+ base_out_channels=base_out_channels,
675
+ ctrl_in_channels=ctrl_in_channels,
676
+ ctrl_out_channels=ctrl_out_channels,
677
+ temb_channels=time_embed_dim,
678
+ norm_num_groups=norm_num_groups,
679
+ ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
680
+ has_crossattn=has_crossattn,
681
+ transformer_layers_per_block=transformer_layers_per_block[i],
682
+ base_num_attention_heads=base_num_attention_heads[i],
683
+ ctrl_num_attention_heads=ctrl_num_attention_heads[i],
684
+ cross_attention_dim=cross_attention_dim[i],
685
+ add_downsample=not is_final_block,
686
+ upcast_attention=upcast_attention,
687
+ )
688
+ )
689
+
690
+ # # Create mid block
691
+ self.mid_block = ControlNetXSCrossAttnMidBlock2D(
692
+ base_channels=block_out_channels[-1],
693
+ ctrl_channels=ctrl_block_out_channels[-1],
694
+ temb_channels=time_embed_dim,
695
+ norm_num_groups=norm_num_groups,
696
+ ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
697
+ transformer_layers_per_block=transformer_layers_per_block[-1],
698
+ base_num_attention_heads=base_num_attention_heads[-1],
699
+ ctrl_num_attention_heads=ctrl_num_attention_heads[-1],
700
+ cross_attention_dim=cross_attention_dim[-1],
701
+ upcast_attention=upcast_attention,
702
+ )
703
+
704
+ # # Create up blocks
705
+ up_blocks = []
706
+ rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
707
+ rev_num_attention_heads = list(reversed(base_num_attention_heads))
708
+ rev_cross_attention_dim = list(reversed(cross_attention_dim))
709
+
710
+ # The skip connection channels are the output of the conv_in and of all the down subblocks
711
+ ctrl_skip_channels = [ctrl_block_out_channels[0]]
712
+ for i, out_channels in enumerate(ctrl_block_out_channels):
713
+ number_of_subblocks = (
714
+ 3 if i < len(ctrl_block_out_channels) - 1 else 2
715
+ ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
716
+ ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
717
+
718
+ reversed_block_out_channels = list(reversed(block_out_channels))
719
+
720
+ out_channels = reversed_block_out_channels[0]
721
+ for i, up_block_type in enumerate(up_block_types):
722
+ prev_output_channel = out_channels
723
+ out_channels = reversed_block_out_channels[i]
724
+ in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
725
+ ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
726
+
727
+ has_crossattn = "CrossAttn" in up_block_type
728
+ is_final_block = i == len(block_out_channels) - 1
729
+
730
+ up_blocks.append(
731
+ ControlNetXSCrossAttnUpBlock2D(
732
+ in_channels=in_channels,
733
+ out_channels=out_channels,
734
+ prev_output_channel=prev_output_channel,
735
+ ctrl_skip_channels=ctrl_skip_channels_,
736
+ temb_channels=time_embed_dim,
737
+ resolution_idx=i,
738
+ has_crossattn=has_crossattn,
739
+ transformer_layers_per_block=rev_transformer_layers_per_block[i],
740
+ num_attention_heads=rev_num_attention_heads[i],
741
+ cross_attention_dim=rev_cross_attention_dim[i],
742
+ add_upsample=not is_final_block,
743
+ upcast_attention=upcast_attention,
744
+ norm_num_groups=norm_num_groups,
745
+ )
746
+ )
747
+
748
+ self.down_blocks = nn.ModuleList(down_blocks)
749
+ self.up_blocks = nn.ModuleList(up_blocks)
750
+
751
+ self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups)
752
+ self.base_conv_act = nn.SiLU()
753
+ self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1)
754
+
755
+ @classmethod
756
+ def from_unet(
757
+ cls,
758
+ unet: UNet2DConditionModel,
759
+ controlnet: Optional[ControlNetXSAdapter] = None,
760
+ size_ratio: Optional[float] = None,
761
+ ctrl_block_out_channels: Optional[List[float]] = None,
762
+ time_embedding_mix: Optional[float] = None,
763
+ ctrl_optional_kwargs: Optional[Dict] = None,
764
+ conditioning_channels: int = 3,
765
+ ):
766
+ r"""
767
+ Instantiate a [`UNetControlNetXSModel`] from a [`UNet2DConditionModel`] and an optional [`ControlNetXSAdapter`]
768
+ .
769
+
770
+ Parameters:
771
+ unet (`UNet2DConditionModel`):
772
+ The UNet model we want to control.
773
+ controlnet (`ControlNetXSAdapter`):
774
+ The ConntrolNet-XS adapter with which the UNet will be fused. If none is given, a new ConntrolNet-XS
775
+ adapter will be created.
776
+ size_ratio (float, *optional*, defaults to `None`):
777
+ Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
778
+ ctrl_block_out_channels (`List[int]`, *optional*, defaults to `None`):
779
+ Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details,
780
+ where this parameter is called `block_out_channels`.
781
+ time_embedding_mix (`float`, *optional*, defaults to None):
782
+ Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
783
+ ctrl_optional_kwargs (`Dict`, *optional*, defaults to `None`):
784
+ Passed to the `init` of the new controlent if no controlent was given.
785
+ """
786
+ if controlnet is None:
787
+ # controlnet = ControlNetXSAdapter.from_unet(
788
+ # unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs
789
+ # )
790
+ controlnet = ControlNetXSAdapter.from_unet(
791
+ unet, size_ratio, ctrl_block_out_channels, conditioning_channels=conditioning_channels
792
+ )
793
+ else:
794
+ if any(
795
+ o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs)
796
+ ):
797
+ raise ValueError(
798
+ "When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs."
799
+ )
800
+
801
+ # # get params
802
+ params_for_unet = [
803
+ "sample_size",
804
+ "down_block_types",
805
+ "up_block_types",
806
+ "block_out_channels",
807
+ "norm_num_groups",
808
+ "cross_attention_dim",
809
+ "transformer_layers_per_block",
810
+ "addition_embed_type",
811
+ "addition_time_embed_dim",
812
+ "upcast_attention",
813
+ "time_cond_proj_dim",
814
+ "projection_class_embeddings_input_dim",
815
+ ]
816
+ params_for_unet = {k: v for k, v in unet.config.items() if k in params_for_unet}
817
+ # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
818
+ params_for_unet["num_attention_heads"] = unet.config.attention_head_dim
819
+
820
+ params_for_controlnet = [
821
+ "conditioning_channels",
822
+ "conditioning_embedding_out_channels",
823
+ "conditioning_channel_order",
824
+ "learn_time_embedding",
825
+ "block_out_channels",
826
+ "num_attention_heads",
827
+ "max_norm_num_groups",
828
+ ]
829
+ params_for_controlnet = {"ctrl_" + k: v for k, v in controlnet.config.items() if k in params_for_controlnet}
830
+ params_for_controlnet["time_embedding_mix"] = controlnet.config.time_embedding_mix
831
+
832
+ # # create model
833
+ model = cls.from_config({**params_for_unet, **params_for_controlnet})
834
+
835
+ # # load weights
836
+ # from unet
837
+ modules_from_unet = [
838
+ "time_embedding",
839
+ "conv_in",
840
+ "conv_norm_out",
841
+ "conv_out",
842
+ ]
843
+ for m in modules_from_unet:
844
+ getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
845
+
846
+ optional_modules_from_unet = [
847
+ "add_time_proj",
848
+ "add_embedding",
849
+ ]
850
+ for m in optional_modules_from_unet:
851
+ if hasattr(unet, m) and getattr(unet, m) is not None:
852
+ getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
853
+
854
+ # from controlnet
855
+ model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict())
856
+ model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict())
857
+ if controlnet.time_embedding is not None:
858
+ model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict())
859
+ model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict())
860
+
861
+ # from both
862
+ model.down_blocks = nn.ModuleList(
863
+ ControlNetXSCrossAttnDownBlock2D.from_modules(b, c)
864
+ for b, c in zip(unet.down_blocks, controlnet.down_blocks)
865
+ )
866
+ model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block)
867
+ model.up_blocks = nn.ModuleList(
868
+ ControlNetXSCrossAttnUpBlock2D.from_modules(b, c)
869
+ for b, c in zip(unet.up_blocks, controlnet.up_connections)
870
+ )
871
+
872
+ # ensure that the UNetControlNetXSModel is the same dtype as the UNet2DConditionModel
873
+ model.to(unet.dtype)
874
+
875
+ return model
876
+
877
+ def freeze_unet_params(self) -> None:
878
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
879
+ tuning."""
880
+ # Freeze everything
881
+ for param in self.parameters():
882
+ param.requires_grad = True
883
+
884
+ # Unfreeze ControlNetXSAdapter
885
+ base_parts = [
886
+ "base_time_proj",
887
+ "base_time_embedding",
888
+ "base_add_time_proj",
889
+ "base_add_embedding",
890
+ "base_conv_in",
891
+ "base_conv_norm_out",
892
+ "base_conv_act",
893
+ "base_conv_out",
894
+ ]
895
+ base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None]
896
+ for part in base_parts:
897
+ for param in part.parameters():
898
+ param.requires_grad = False
899
+
900
+ for d in self.down_blocks:
901
+ d.freeze_base_params()
902
+ self.mid_block.freeze_base_params()
903
+ for u in self.up_blocks:
904
+ u.freeze_base_params()
905
+
906
+ def _set_gradient_checkpointing(self, module, value=False):
907
+ if hasattr(module, "gradient_checkpointing"):
908
+ module.gradient_checkpointing = value
909
+
910
+ # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel
911
+ @property
912
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
913
+ r"""
914
+ Returns:
915
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
916
+ indexed by its weight name.
917
+ """
918
+ # set recursively
919
+ processors = {}
920
+
921
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
922
+ if hasattr(module, "get_processor"):
923
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
924
+
925
+ for sub_name, child in module.named_children():
926
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
927
+
928
+ return processors
929
+
930
+ for name, module in self.named_children():
931
+ fn_recursive_add_processors(name, module, processors)
932
+
933
+ return processors
934
+
935
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
936
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
937
+ r"""
938
+ Sets the attention processor to use to compute attention.
939
+
940
+ Parameters:
941
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
942
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
943
+ for **all** `Attention` layers.
944
+
945
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
946
+ processor. This is strongly recommended when setting trainable attention processors.
947
+
948
+ """
949
+ count = len(self.attn_processors.keys())
950
+
951
+ if isinstance(processor, dict) and len(processor) != count:
952
+ raise ValueError(
953
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
954
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
955
+ )
956
+
957
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
958
+ if hasattr(module, "set_processor"):
959
+ if not isinstance(processor, dict):
960
+ module.set_processor(processor)
961
+ else:
962
+ module.set_processor(processor.pop(f"{name}.processor"))
963
+
964
+ for sub_name, child in module.named_children():
965
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
966
+
967
+ for name, module in self.named_children():
968
+ fn_recursive_attn_processor(name, module, processor)
969
+
970
+ @property
971
+ def attn_processors_unet(self) -> Dict[str, AttentionProcessor]:
972
+ r"""
973
+ Returns:
974
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
975
+ indexed by its weight name.
976
+ """
977
+ # set recursively
978
+ processors = {}
979
+
980
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
981
+ if 'ctrl_' in name:
982
+ '''ip-adapter设置交叉注意力,attn_processor时,只获取unet的参数'''
983
+ return processors
984
+
985
+ if hasattr(module, "get_processor"):
986
+ # processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
987
+ # 为什么??? module.get_processor(return_deprecated_lora=True)返回值是None
988
+ processors[f"{name}.processor"] = module.processor
989
+
990
+ for sub_name, child in module.named_children():
991
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
992
+
993
+ return processors
994
+
995
+ for name, module in self.named_children():
996
+ fn_recursive_add_processors(name, module, processors)
997
+
998
+ return processors
999
+
1000
+ def set_attn_processor_unet(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
1001
+ r"""
1002
+ Sets the attention processor to use to compute attention.
1003
+
1004
+ Parameters:
1005
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
1006
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
1007
+ for **all** `Attention` layers.
1008
+
1009
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
1010
+ processor. This is strongly recommended when setting trainable attention processors.
1011
+
1012
+ """
1013
+ '''ip-adapter设置交叉注意力,set_attn_processor时,只针对unet设置,不为controlnetxs设置'''
1014
+
1015
+ count = len(self.attn_processors_unet.keys())
1016
+
1017
+ if isinstance(processor, dict) and len(processor) != count:
1018
+ raise ValueError(
1019
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
1020
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
1021
+ )
1022
+
1023
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
1024
+
1025
+ if hasattr(module, "set_processor"):
1026
+ if 'ctrl_' in name:
1027
+ return
1028
+
1029
+ if not isinstance(processor, dict):
1030
+ module.set_processor(processor)
1031
+ else:
1032
+ module.set_processor(processor.pop(f"{name}.processor"))
1033
+
1034
+ for sub_name, child in module.named_children():
1035
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
1036
+
1037
+ for name, module in self.named_children():
1038
+ fn_recursive_attn_processor(name, module, processor)
1039
+
1040
+ # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
1041
+ def set_default_attn_processor(self):
1042
+ """
1043
+ Disables custom attention processors and sets the default attention implementation.
1044
+ """
1045
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
1046
+ processor = AttnAddedKVProcessor()
1047
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
1048
+ processor = AttnProcessor()
1049
+ else:
1050
+ raise ValueError(
1051
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
1052
+ )
1053
+
1054
+ self.set_attn_processor_cnxs(processor)
1055
+
1056
+ # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
1057
+ def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
1058
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
1059
+
1060
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
1061
+
1062
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
1063
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
1064
+
1065
+ Args:
1066
+ s1 (`float`):
1067
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
1068
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
1069
+ s2 (`float`):
1070
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
1071
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
1072
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
1073
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
1074
+ """
1075
+ for i, upsample_block in enumerate(self.up_blocks):
1076
+ setattr(upsample_block, "s1", s1)
1077
+ setattr(upsample_block, "s2", s2)
1078
+ setattr(upsample_block, "b1", b1)
1079
+ setattr(upsample_block, "b2", b2)
1080
+
1081
+ # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
1082
+ def disable_freeu(self):
1083
+ """Disables the FreeU mechanism."""
1084
+ freeu_keys = {"s1", "s2", "b1", "b2"}
1085
+ for i, upsample_block in enumerate(self.up_blocks):
1086
+ for k in freeu_keys:
1087
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
1088
+ setattr(upsample_block, k, None)
1089
+
1090
+ # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
1091
+ def fuse_qkv_projections(self):
1092
+ """
1093
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
1094
+ are fused. For cross-attention modules, key and value projection matrices are fused.
1095
+
1096
+ <Tip warning={true}>
1097
+
1098
+ This API is 🧪 experimental.
1099
+
1100
+ </Tip>
1101
+ """
1102
+ self.original_attn_processors = None
1103
+
1104
+ for _, attn_processor in self.attn_processors.items():
1105
+ if "Added" in str(attn_processor.__class__.__name__):
1106
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
1107
+
1108
+ self.original_attn_processors = self.attn_processors
1109
+
1110
+ for module in self.modules():
1111
+ if isinstance(module, Attention):
1112
+ module.fuse_projections(fuse=True)
1113
+
1114
+ # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
1115
+ def unfuse_qkv_projections(self):
1116
+ """Disables the fused QKV projection if enabled.
1117
+
1118
+ <Tip warning={true}>
1119
+
1120
+ This API is 🧪 experimental.
1121
+
1122
+ </Tip>
1123
+
1124
+ """
1125
+ if self.original_attn_processors is not None:
1126
+ self.set_attn_processor(self.original_attn_processors)
1127
+
1128
+ def forward(
1129
+ self,
1130
+ sample: Tensor,
1131
+ timestep: Union[torch.Tensor, float, int],
1132
+ unet_encoder_hidden_states: torch.Tensor,
1133
+ cnxs_encoder_hidden_states: torch.Tensor,
1134
+ controlnet_cond: Optional[torch.Tensor] = None,
1135
+ conditioning_scale: Optional[float] = 1.0,
1136
+ class_labels: Optional[torch.Tensor] = None,
1137
+ timestep_cond: Optional[torch.Tensor] = None,
1138
+ attention_mask: Optional[torch.Tensor] = None,
1139
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1140
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
1141
+ return_dict: bool = True,
1142
+ apply_control: bool = True,
1143
+ ) -> Union[ControlNetXSOutput, Tuple]:
1144
+ """
1145
+ The [`ControlNetXSModel`] forward method.
1146
+
1147
+ Args:
1148
+ sample (`Tensor`):
1149
+ The noisy input tensor.
1150
+ timestep (`Union[torch.Tensor, float, int]`):
1151
+ The number of timesteps to denoise an input.
1152
+ encoder_hidden_states (`torch.Tensor`):
1153
+ The encoder hidden states.
1154
+ controlnet_cond (`Tensor`):
1155
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
1156
+ conditioning_scale (`float`, defaults to `1.0`):
1157
+ How much the control model affects the base model outputs.
1158
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
1159
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
1160
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
1161
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
1162
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
1163
+ embeddings.
1164
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
1165
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
1166
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
1167
+ negative values to the attention scores corresponding to "discard" tokens.
1168
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
1169
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
1170
+ added_cond_kwargs (`dict`):
1171
+ Additional conditions for the Stable Diffusion XL UNet.
1172
+ return_dict (`bool`, defaults to `True`):
1173
+ Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
1174
+ apply_control (`bool`, defaults to `True`):
1175
+ If `False`, the input is run only through the base model.
1176
+
1177
+ Returns:
1178
+ [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
1179
+ If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
1180
+ tuple is returned where the first element is the sample tensor.
1181
+ """
1182
+
1183
+ # check channel order
1184
+ if self.config.ctrl_conditioning_channel_order == "bgr":
1185
+ controlnet_cond = torch.flip(controlnet_cond, dims=[1])
1186
+
1187
+ # prepare attention_mask
1188
+ if attention_mask is not None:
1189
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
1190
+ attention_mask = attention_mask.unsqueeze(1)
1191
+
1192
+ # 1. time
1193
+ timesteps = timestep
1194
+ if not torch.is_tensor(timesteps):
1195
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
1196
+ # This would be a good case for the `match` statement (Python 3.10+)
1197
+ is_mps = sample.device.type == "mps"
1198
+ if isinstance(timestep, float):
1199
+ dtype = torch.float32 if is_mps else torch.float64
1200
+ else:
1201
+ dtype = torch.int32 if is_mps else torch.int64
1202
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
1203
+ elif len(timesteps.shape) == 0:
1204
+ timesteps = timesteps[None].to(sample.device)
1205
+
1206
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1207
+ timesteps = timesteps.expand(sample.shape[0])
1208
+
1209
+ t_emb = self.base_time_proj(timesteps)
1210
+
1211
+ # timesteps does not contain any weights and will always return f32 tensors
1212
+ # but time_embedding might actually be running in fp16. so we need to cast here.
1213
+ # there might be better ways to encapsulate this.
1214
+ t_emb = t_emb.to(dtype=sample.dtype)
1215
+
1216
+ if self.config.ctrl_learn_time_embedding and apply_control:
1217
+ ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond)
1218
+ base_temb = self.base_time_embedding(t_emb, timestep_cond)
1219
+ interpolation_param = self.config.time_embedding_mix**0.3
1220
+
1221
+ temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
1222
+ else:
1223
+ temb = self.base_time_embedding(t_emb)
1224
+
1225
+ # added time & text embeddings
1226
+ aug_emb = None
1227
+
1228
+ if self.config.addition_embed_type is None:
1229
+ pass
1230
+ elif self.config.addition_embed_type == "text_time":
1231
+ # SDXL - style
1232
+ if "text_embeds" not in added_cond_kwargs:
1233
+ raise ValueError(
1234
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
1235
+ )
1236
+ text_embeds = added_cond_kwargs.get("text_embeds")
1237
+ if "time_ids" not in added_cond_kwargs:
1238
+ raise ValueError(
1239
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
1240
+ )
1241
+ time_ids = added_cond_kwargs.get("time_ids")
1242
+ time_embeds = self.base_add_time_proj(time_ids.flatten())
1243
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
1244
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
1245
+ add_embeds = add_embeds.to(temb.dtype)
1246
+ aug_emb = self.base_add_embedding(add_embeds)
1247
+ else:
1248
+ raise ValueError(
1249
+ f"ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported."
1250
+ )
1251
+
1252
+ temb = temb + aug_emb if aug_emb is not None else temb
1253
+
1254
+ # text embeddings
1255
+ # cemb = unet_encoder_hidden_states
1256
+
1257
+ # Preparation
1258
+ h_ctrl = h_base = sample
1259
+ hs_base, hs_ctrl = [], []
1260
+
1261
+ # Cross Control
1262
+ guided_hint = self.controlnet_cond_embedding(controlnet_cond)
1263
+
1264
+ # 1 - conv in & down
1265
+
1266
+ h_base = self.base_conv_in(h_base)
1267
+ h_ctrl = self.ctrl_conv_in(h_ctrl)
1268
+ if guided_hint is not None:
1269
+ h_ctrl += guided_hint
1270
+ if apply_control:
1271
+ h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale # add ctrl -> base
1272
+
1273
+ hs_base.append(h_base)
1274
+ hs_ctrl.append(h_ctrl)
1275
+
1276
+ for down in self.down_blocks:
1277
+ h_base, h_ctrl, residual_hb, residual_hc = down(
1278
+ hidden_states_base=h_base,
1279
+ hidden_states_ctrl=h_ctrl,
1280
+ temb=temb,
1281
+ # encoder_hidden_states=cemb,
1282
+ unet_encoder_hidden_states=unet_encoder_hidden_states,
1283
+ cnxs_encoder_hidden_states=cnxs_encoder_hidden_states,
1284
+ conditioning_scale=conditioning_scale,
1285
+ cross_attention_kwargs=cross_attention_kwargs,
1286
+ attention_mask=attention_mask,
1287
+ apply_control=apply_control,
1288
+ )
1289
+ hs_base.extend(residual_hb)
1290
+ hs_ctrl.extend(residual_hc)
1291
+
1292
+ # 2 - mid
1293
+ h_base, h_ctrl = self.mid_block(
1294
+ hidden_states_base=h_base,
1295
+ hidden_states_ctrl=h_ctrl,
1296
+ temb=temb,
1297
+ # encoder_hidden_states=cemb,
1298
+ unet_encoder_hidden_states=unet_encoder_hidden_states,
1299
+ cnxs_encoder_hidden_states=cnxs_encoder_hidden_states,
1300
+ conditioning_scale=conditioning_scale,
1301
+ cross_attention_kwargs=cross_attention_kwargs,
1302
+ attention_mask=attention_mask,
1303
+ apply_control=apply_control,
1304
+ )
1305
+
1306
+ # 3 - up
1307
+ for up in self.up_blocks:
1308
+ n_resnets = len(up.resnets)
1309
+ skips_hb = hs_base[-n_resnets:]
1310
+ skips_hc = hs_ctrl[-n_resnets:]
1311
+ hs_base = hs_base[:-n_resnets]
1312
+ hs_ctrl = hs_ctrl[:-n_resnets]
1313
+ h_base = up(
1314
+ hidden_states=h_base,
1315
+ res_hidden_states_tuple_base=skips_hb,
1316
+ res_hidden_states_tuple_ctrl=skips_hc,
1317
+ temb=temb,
1318
+ encoder_hidden_states=unet_encoder_hidden_states,
1319
+ conditioning_scale=conditioning_scale,
1320
+ cross_attention_kwargs=cross_attention_kwargs,
1321
+ attention_mask=attention_mask,
1322
+ apply_control=apply_control,
1323
+ )
1324
+
1325
+ # 4 - conv out
1326
+ h_base = self.base_conv_norm_out(h_base)
1327
+ h_base = self.base_conv_act(h_base)
1328
+ h_base = self.base_conv_out(h_base)
1329
+
1330
+ if not return_dict:
1331
+ return (h_base,)
1332
+
1333
+ return ControlNetXSOutput(sample=h_base)
1334
+
1335
+
1336
+ class ControlNetXSCrossAttnDownBlock2D(nn.Module):
1337
+ def __init__(
1338
+ self,
1339
+ base_in_channels: int,
1340
+ base_out_channels: int,
1341
+ ctrl_in_channels: int,
1342
+ ctrl_out_channels: int,
1343
+ temb_channels: int,
1344
+ norm_num_groups: int = 32,
1345
+ ctrl_max_norm_num_groups: int = 32,
1346
+ has_crossattn=True,
1347
+ transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
1348
+ base_num_attention_heads: Optional[int] = 1,
1349
+ ctrl_num_attention_heads: Optional[int] = 1,
1350
+ cross_attention_dim: Optional[int] = 1024,
1351
+ add_downsample: bool = True,
1352
+ upcast_attention: Optional[bool] = False,
1353
+ ):
1354
+ super().__init__()
1355
+ base_resnets = []
1356
+ base_attentions = []
1357
+ ctrl_resnets = []
1358
+ ctrl_attentions = []
1359
+ ctrl_to_base = []
1360
+ base_to_ctrl = []
1361
+
1362
+ num_layers = 2 # only support sd + sdxl
1363
+
1364
+ if isinstance(transformer_layers_per_block, int):
1365
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
1366
+
1367
+ for i in range(num_layers):
1368
+ base_in_channels = base_in_channels if i == 0 else base_out_channels
1369
+ ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
1370
+
1371
+ # Before the resnet/attention application, information is concatted from base to control.
1372
+ # Concat doesn't require change in number of channels
1373
+ base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
1374
+
1375
+ base_resnets.append(
1376
+ ResnetBlock2D(
1377
+ in_channels=base_in_channels,
1378
+ out_channels=base_out_channels,
1379
+ temb_channels=temb_channels,
1380
+ groups=norm_num_groups,
1381
+ )
1382
+ )
1383
+ ctrl_resnets.append(
1384
+ ResnetBlock2D(
1385
+ in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
1386
+ out_channels=ctrl_out_channels,
1387
+ temb_channels=temb_channels,
1388
+ groups=find_largest_factor(
1389
+ ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups
1390
+ ),
1391
+ groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
1392
+ eps=1e-5,
1393
+ )
1394
+ )
1395
+
1396
+ if has_crossattn:
1397
+ base_attentions.append(
1398
+ Transformer2DModel(
1399
+ base_num_attention_heads,
1400
+ base_out_channels // base_num_attention_heads,
1401
+ in_channels=base_out_channels,
1402
+ num_layers=transformer_layers_per_block[i],
1403
+ cross_attention_dim=cross_attention_dim,
1404
+ use_linear_projection=True,
1405
+ upcast_attention=upcast_attention,
1406
+ norm_num_groups=norm_num_groups,
1407
+ )
1408
+ )
1409
+ ctrl_attentions.append(
1410
+ Transformer2DModel(
1411
+ ctrl_num_attention_heads,
1412
+ ctrl_out_channels // ctrl_num_attention_heads,
1413
+ in_channels=ctrl_out_channels,
1414
+ num_layers=transformer_layers_per_block[i],
1415
+ cross_attention_dim=cross_attention_dim,
1416
+ use_linear_projection=True,
1417
+ upcast_attention=upcast_attention,
1418
+ norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
1419
+ )
1420
+ )
1421
+
1422
+ # After the resnet/attention application, information is added from control to base
1423
+ # Addition requires change in number of channels
1424
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
1425
+
1426
+ if add_downsample:
1427
+ # Before the downsampler application, information is concatted from base to control
1428
+ # Concat doesn't require change in number of channels
1429
+ base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
1430
+
1431
+ self.base_downsamplers = Downsample2D(
1432
+ base_out_channels, use_conv=True, out_channels=base_out_channels, name="op"
1433
+ )
1434
+ self.ctrl_downsamplers = Downsample2D(
1435
+ ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
1436
+ )
1437
+
1438
+ # After the downsampler application, information is added from control to base
1439
+ # Addition requires change in number of channels
1440
+ ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
1441
+ else:
1442
+ self.base_downsamplers = None
1443
+ self.ctrl_downsamplers = None
1444
+
1445
+ self.base_resnets = nn.ModuleList(base_resnets)
1446
+ self.ctrl_resnets = nn.ModuleList(ctrl_resnets)
1447
+ self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers
1448
+ self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers
1449
+ self.base_to_ctrl = nn.ModuleList(base_to_ctrl)
1450
+ self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
1451
+
1452
+ self.gradient_checkpointing = False
1453
+
1454
+ @classmethod
1455
+ def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter):
1456
+ # get params
1457
+ def get_first_cross_attention(block):
1458
+ return block.attentions[0].transformer_blocks[0].attn2
1459
+
1460
+ base_in_channels = base_downblock.resnets[0].in_channels
1461
+ base_out_channels = base_downblock.resnets[0].out_channels
1462
+ ctrl_in_channels = (
1463
+ ctrl_downblock.resnets[0].in_channels - base_in_channels
1464
+ ) # base channels are concatted to ctrl channels in init
1465
+ ctrl_out_channels = ctrl_downblock.resnets[0].out_channels
1466
+ temb_channels = base_downblock.resnets[0].time_emb_proj.in_features
1467
+ num_groups = base_downblock.resnets[0].norm1.num_groups
1468
+ ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups
1469
+ if hasattr(base_downblock, "attentions"):
1470
+ has_crossattn = True
1471
+ transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks)
1472
+ base_num_attention_heads = get_first_cross_attention(base_downblock).heads
1473
+ ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads
1474
+ cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim
1475
+ upcast_attention = get_first_cross_attention(base_downblock).upcast_attention
1476
+ else:
1477
+ has_crossattn = False
1478
+ transformer_layers_per_block = None
1479
+ base_num_attention_heads = None
1480
+ ctrl_num_attention_heads = None
1481
+ cross_attention_dim = None
1482
+ upcast_attention = None
1483
+ add_downsample = base_downblock.downsamplers is not None
1484
+
1485
+ # create model
1486
+ model = cls(
1487
+ base_in_channels=base_in_channels,
1488
+ base_out_channels=base_out_channels,
1489
+ ctrl_in_channels=ctrl_in_channels,
1490
+ ctrl_out_channels=ctrl_out_channels,
1491
+ temb_channels=temb_channels,
1492
+ norm_num_groups=num_groups,
1493
+ ctrl_max_norm_num_groups=ctrl_num_groups,
1494
+ has_crossattn=has_crossattn,
1495
+ transformer_layers_per_block=transformer_layers_per_block,
1496
+ base_num_attention_heads=base_num_attention_heads,
1497
+ ctrl_num_attention_heads=ctrl_num_attention_heads,
1498
+ cross_attention_dim=cross_attention_dim,
1499
+ add_downsample=add_downsample,
1500
+ upcast_attention=upcast_attention,
1501
+ )
1502
+
1503
+ # # load weights
1504
+ model.base_resnets.load_state_dict(base_downblock.resnets.state_dict())
1505
+ model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict())
1506
+ if has_crossattn:
1507
+ model.base_attentions.load_state_dict(base_downblock.attentions.state_dict())
1508
+ model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict())
1509
+ if add_downsample:
1510
+ model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict())
1511
+ model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict())
1512
+ model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict())
1513
+ model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict())
1514
+
1515
+ return model
1516
+
1517
+ def freeze_base_params(self) -> None:
1518
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
1519
+ tuning."""
1520
+ # Unfreeze everything
1521
+ for param in self.parameters():
1522
+ param.requires_grad = True
1523
+
1524
+ # Freeze base part
1525
+ base_parts = [self.base_resnets]
1526
+ if isinstance(self.base_attentions, nn.ModuleList): # attentions can be a list of Nones
1527
+ base_parts.append(self.base_attentions)
1528
+ if self.base_downsamplers is not None:
1529
+ base_parts.append(self.base_downsamplers)
1530
+ for part in base_parts:
1531
+ for param in part.parameters():
1532
+ param.requires_grad = False
1533
+
1534
+ def forward(
1535
+ self,
1536
+ hidden_states_base: Tensor,
1537
+ temb: Tensor,
1538
+ unet_encoder_hidden_states: Optional[Tensor] = None,
1539
+ cnxs_encoder_hidden_states: Optional[Tensor] = None,
1540
+ hidden_states_ctrl: Optional[Tensor] = None,
1541
+ conditioning_scale: Optional[float] = 1.0,
1542
+ attention_mask: Optional[Tensor] = None,
1543
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1544
+ encoder_attention_mask: Optional[Tensor] = None,
1545
+ apply_control: bool = True,
1546
+ ) -> Tuple[Tensor, Tensor, Tuple[Tensor, ...], Tuple[Tensor, ...]]:
1547
+ if cross_attention_kwargs is not None:
1548
+ if cross_attention_kwargs.get("scale", None) is not None:
1549
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
1550
+
1551
+ h_base = hidden_states_base
1552
+ h_ctrl = hidden_states_ctrl
1553
+
1554
+ base_output_states = ()
1555
+ ctrl_output_states = ()
1556
+
1557
+ base_blocks = list(zip(self.base_resnets, self.base_attentions))
1558
+ ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions))
1559
+
1560
+ def create_custom_forward(module, return_dict=None):
1561
+ def custom_forward(*inputs):
1562
+ if return_dict is not None:
1563
+ return module(*inputs, return_dict=return_dict)
1564
+ else:
1565
+ return module(*inputs)
1566
+
1567
+ return custom_forward
1568
+
1569
+ for (b_res, b_attn), (c_res, c_attn), b2c, c2b in zip(
1570
+ base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base
1571
+ ):
1572
+ # concat base -> ctrl
1573
+ if apply_control:
1574
+ h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
1575
+
1576
+ # apply base subblock
1577
+ if self.training and self.gradient_checkpointing:
1578
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1579
+ h_base = torch.utils.checkpoint.checkpoint(
1580
+ create_custom_forward(b_res),
1581
+ h_base,
1582
+ temb,
1583
+ **ckpt_kwargs,
1584
+ )
1585
+ else:
1586
+ h_base = b_res(h_base, temb)
1587
+
1588
+ if b_attn is not None:
1589
+ h_base = b_attn(
1590
+ h_base,
1591
+ # 11-07
1592
+ encoder_hidden_states=unet_encoder_hidden_states,
1593
+ cross_attention_kwargs=cross_attention_kwargs,
1594
+ attention_mask=attention_mask,
1595
+ encoder_attention_mask=encoder_attention_mask,
1596
+ return_dict=False,
1597
+ )[0]
1598
+
1599
+ # apply ctrl subblock
1600
+ if apply_control:
1601
+ if self.training and self.gradient_checkpointing:
1602
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1603
+ h_ctrl = torch.utils.checkpoint.checkpoint(
1604
+ create_custom_forward(c_res),
1605
+ h_ctrl,
1606
+ temb,
1607
+ **ckpt_kwargs,
1608
+ )
1609
+ else:
1610
+ h_ctrl = c_res(h_ctrl, temb)
1611
+ if c_attn is not None:
1612
+ h_ctrl = c_attn(
1613
+ h_ctrl,
1614
+ # 11-07
1615
+ encoder_hidden_states=cnxs_encoder_hidden_states,
1616
+ cross_attention_kwargs=cross_attention_kwargs,
1617
+ attention_mask=attention_mask,
1618
+ encoder_attention_mask=encoder_attention_mask,
1619
+ return_dict=False,
1620
+ )[0]
1621
+
1622
+ # add ctrl -> base
1623
+ if apply_control:
1624
+ h_base = h_base + c2b(h_ctrl) * conditioning_scale
1625
+
1626
+ base_output_states = base_output_states + (h_base,)
1627
+ ctrl_output_states = ctrl_output_states + (h_ctrl,)
1628
+
1629
+ if self.base_downsamplers is not None: # if we have a base_downsampler, then also a ctrl_downsampler
1630
+ b2c = self.base_to_ctrl[-1]
1631
+ c2b = self.ctrl_to_base[-1]
1632
+
1633
+ # concat base -> ctrl
1634
+ if apply_control:
1635
+ h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
1636
+ # apply base subblock
1637
+ h_base = self.base_downsamplers(h_base)
1638
+ # apply ctrl subblock
1639
+ if apply_control:
1640
+ h_ctrl = self.ctrl_downsamplers(h_ctrl)
1641
+ # add ctrl -> base
1642
+ if apply_control:
1643
+ h_base = h_base + c2b(h_ctrl) * conditioning_scale
1644
+
1645
+ base_output_states = base_output_states + (h_base,)
1646
+ ctrl_output_states = ctrl_output_states + (h_ctrl,)
1647
+
1648
+ return h_base, h_ctrl, base_output_states, ctrl_output_states
1649
+
1650
+
1651
+ class ControlNetXSCrossAttnMidBlock2D(nn.Module):
1652
+ def __init__(
1653
+ self,
1654
+ base_channels: int,
1655
+ ctrl_channels: int,
1656
+ temb_channels: Optional[int] = None,
1657
+ norm_num_groups: int = 32,
1658
+ ctrl_max_norm_num_groups: int = 32,
1659
+ transformer_layers_per_block: int = 1,
1660
+ base_num_attention_heads: Optional[int] = 1,
1661
+ ctrl_num_attention_heads: Optional[int] = 1,
1662
+ cross_attention_dim: Optional[int] = 1024,
1663
+ upcast_attention: bool = False,
1664
+ ):
1665
+ super().__init__()
1666
+
1667
+ # Before the midblock application, information is concatted from base to control.
1668
+ # Concat doesn't require change in number of channels
1669
+ self.base_to_ctrl = make_zero_conv(base_channels, base_channels)
1670
+
1671
+ self.base_midblock = UNetMidBlock2DCrossAttn(
1672
+ transformer_layers_per_block=transformer_layers_per_block,
1673
+ in_channels=base_channels,
1674
+ temb_channels=temb_channels,
1675
+ resnet_groups=norm_num_groups,
1676
+ cross_attention_dim=cross_attention_dim,
1677
+ num_attention_heads=base_num_attention_heads,
1678
+ use_linear_projection=True,
1679
+ upcast_attention=upcast_attention,
1680
+ )
1681
+
1682
+ self.ctrl_midblock = UNetMidBlock2DCrossAttn(
1683
+ transformer_layers_per_block=transformer_layers_per_block,
1684
+ in_channels=ctrl_channels + base_channels,
1685
+ out_channels=ctrl_channels,
1686
+ temb_channels=temb_channels,
1687
+ # number or norm groups must divide both in_channels and out_channels
1688
+ resnet_groups=find_largest_factor(
1689
+ gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups
1690
+ ),
1691
+ cross_attention_dim=cross_attention_dim,
1692
+ num_attention_heads=ctrl_num_attention_heads,
1693
+ use_linear_projection=True,
1694
+ upcast_attention=upcast_attention,
1695
+ )
1696
+
1697
+ # After the midblock application, information is added from control to base
1698
+ # Addition requires change in number of channels
1699
+ self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
1700
+
1701
+ self.gradient_checkpointing = False
1702
+
1703
+ @classmethod
1704
+ def from_modules(
1705
+ cls,
1706
+ base_midblock: UNetMidBlock2DCrossAttn,
1707
+ ctrl_midblock: MidBlockControlNetXSAdapter,
1708
+ ):
1709
+ base_to_ctrl = ctrl_midblock.base_to_ctrl
1710
+ ctrl_to_base = ctrl_midblock.ctrl_to_base
1711
+ ctrl_midblock = ctrl_midblock.midblock
1712
+
1713
+ # get params
1714
+ def get_first_cross_attention(midblock):
1715
+ return midblock.attentions[0].transformer_blocks[0].attn2
1716
+
1717
+ base_channels = ctrl_to_base.out_channels
1718
+ ctrl_channels = ctrl_to_base.in_channels
1719
+ transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks)
1720
+ temb_channels = base_midblock.resnets[0].time_emb_proj.in_features
1721
+ num_groups = base_midblock.resnets[0].norm1.num_groups
1722
+ ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups
1723
+ base_num_attention_heads = get_first_cross_attention(base_midblock).heads
1724
+ ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads
1725
+ cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim
1726
+ upcast_attention = get_first_cross_attention(base_midblock).upcast_attention
1727
+
1728
+ # create model
1729
+ model = cls(
1730
+ base_channels=base_channels,
1731
+ ctrl_channels=ctrl_channels,
1732
+ temb_channels=temb_channels,
1733
+ norm_num_groups=num_groups,
1734
+ ctrl_max_norm_num_groups=ctrl_num_groups,
1735
+ transformer_layers_per_block=transformer_layers_per_block,
1736
+ base_num_attention_heads=base_num_attention_heads,
1737
+ ctrl_num_attention_heads=ctrl_num_attention_heads,
1738
+ cross_attention_dim=cross_attention_dim,
1739
+ upcast_attention=upcast_attention,
1740
+ )
1741
+
1742
+ # load weights
1743
+ model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict())
1744
+ model.base_midblock.load_state_dict(base_midblock.state_dict())
1745
+ model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict())
1746
+ model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict())
1747
+
1748
+ return model
1749
+
1750
+ def freeze_base_params(self) -> None:
1751
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
1752
+ tuning."""
1753
+ # Unfreeze everything
1754
+ for param in self.parameters():
1755
+ param.requires_grad = True
1756
+
1757
+ # Freeze base part
1758
+ for param in self.base_midblock.parameters():
1759
+ param.requires_grad = False
1760
+
1761
+ def forward(
1762
+ self,
1763
+ hidden_states_base: Tensor,
1764
+ temb: Tensor,
1765
+ unet_encoder_hidden_states: Optional[Tensor] = None,
1766
+ cnxs_encoder_hidden_states: Optional[Tensor] = None,
1767
+ hidden_states_ctrl: Optional[Tensor] = None,
1768
+ conditioning_scale: Optional[float] = 1.0,
1769
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1770
+ attention_mask: Optional[Tensor] = None,
1771
+ encoder_attention_mask: Optional[Tensor] = None,
1772
+ apply_control: bool = True,
1773
+ ) -> Tuple[Tensor, Tensor]:
1774
+ if cross_attention_kwargs is not None:
1775
+ if cross_attention_kwargs.get("scale", None) is not None:
1776
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
1777
+
1778
+ h_base = hidden_states_base
1779
+ h_ctrl = hidden_states_ctrl
1780
+
1781
+ # joint_args = {
1782
+ # "temb": temb,
1783
+ # "encoder_hidden_states": encoder_hidden_states,
1784
+ # "attention_mask": attention_mask,
1785
+ # "cross_attention_kwargs": cross_attention_kwargs,
1786
+ # "encoder_attention_mask": encoder_attention_mask,
1787
+ # }
1788
+ unet_joint_args = {
1789
+ "temb": temb,
1790
+ "encoder_hidden_states": unet_encoder_hidden_states,
1791
+ "attention_mask": attention_mask,
1792
+ "cross_attention_kwargs": cross_attention_kwargs,
1793
+ "encoder_attention_mask": encoder_attention_mask,
1794
+ }
1795
+
1796
+ cnxs_joint_args = {
1797
+ "temb": temb,
1798
+ "encoder_hidden_states": cnxs_encoder_hidden_states,
1799
+ "attention_mask": attention_mask,
1800
+ "cross_attention_kwargs": cross_attention_kwargs,
1801
+ "encoder_attention_mask": encoder_attention_mask,
1802
+ }
1803
+
1804
+ if apply_control:
1805
+ h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) # concat base -> ctrl
1806
+ h_base = self.base_midblock(h_base, **unet_joint_args) # apply base mid block
1807
+ if apply_control:
1808
+ h_ctrl = self.ctrl_midblock(h_ctrl, **cnxs_joint_args) # apply ctrl mid block
1809
+ h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale # add ctrl -> base
1810
+
1811
+ return h_base, h_ctrl
1812
+
1813
+
1814
+ class ControlNetXSCrossAttnUpBlock2D(nn.Module):
1815
+ def __init__(
1816
+ self,
1817
+ in_channels: int,
1818
+ out_channels: int,
1819
+ prev_output_channel: int,
1820
+ ctrl_skip_channels: List[int],
1821
+ temb_channels: int,
1822
+ norm_num_groups: int = 32,
1823
+ resolution_idx: Optional[int] = None,
1824
+ has_crossattn=True,
1825
+ transformer_layers_per_block: int = 1,
1826
+ num_attention_heads: int = 1,
1827
+ cross_attention_dim: int = 1024,
1828
+ add_upsample: bool = True,
1829
+ upcast_attention: bool = False,
1830
+ ):
1831
+ super().__init__()
1832
+ resnets = []
1833
+ attentions = []
1834
+ ctrl_to_base = []
1835
+
1836
+ num_layers = 3 # only support sd + sdxl
1837
+
1838
+ self.has_cross_attention = has_crossattn
1839
+ self.num_attention_heads = num_attention_heads
1840
+
1841
+ if isinstance(transformer_layers_per_block, int):
1842
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
1843
+
1844
+ for i in range(num_layers):
1845
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
1846
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
1847
+
1848
+ ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
1849
+
1850
+ resnets.append(
1851
+ ResnetBlock2D(
1852
+ in_channels=resnet_in_channels + res_skip_channels,
1853
+ out_channels=out_channels,
1854
+ temb_channels=temb_channels,
1855
+ groups=norm_num_groups,
1856
+ )
1857
+ )
1858
+
1859
+ if has_crossattn:
1860
+ attentions.append(
1861
+ Transformer2DModel(
1862
+ num_attention_heads,
1863
+ out_channels // num_attention_heads,
1864
+ in_channels=out_channels,
1865
+ num_layers=transformer_layers_per_block[i],
1866
+ cross_attention_dim=cross_attention_dim,
1867
+ use_linear_projection=True,
1868
+ upcast_attention=upcast_attention,
1869
+ norm_num_groups=norm_num_groups,
1870
+ )
1871
+ )
1872
+
1873
+ self.resnets = nn.ModuleList(resnets)
1874
+ self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers
1875
+ self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
1876
+
1877
+ if add_upsample:
1878
+ self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels)
1879
+ else:
1880
+ self.upsamplers = None
1881
+
1882
+ self.gradient_checkpointing = False
1883
+ self.resolution_idx = resolution_idx
1884
+
1885
+ @classmethod
1886
+ def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter):
1887
+ ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base
1888
+
1889
+ # get params
1890
+ def get_first_cross_attention(block):
1891
+ return block.attentions[0].transformer_blocks[0].attn2
1892
+
1893
+ out_channels = base_upblock.resnets[0].out_channels
1894
+ in_channels = base_upblock.resnets[-1].in_channels - out_channels
1895
+ prev_output_channels = base_upblock.resnets[0].in_channels - out_channels
1896
+ ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections]
1897
+ temb_channels = base_upblock.resnets[0].time_emb_proj.in_features
1898
+ num_groups = base_upblock.resnets[0].norm1.num_groups
1899
+ resolution_idx = base_upblock.resolution_idx
1900
+ if hasattr(base_upblock, "attentions"):
1901
+ has_crossattn = True
1902
+ transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks)
1903
+ num_attention_heads = get_first_cross_attention(base_upblock).heads
1904
+ cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim
1905
+ upcast_attention = get_first_cross_attention(base_upblock).upcast_attention
1906
+ else:
1907
+ has_crossattn = False
1908
+ transformer_layers_per_block = None
1909
+ num_attention_heads = None
1910
+ cross_attention_dim = None
1911
+ upcast_attention = None
1912
+ add_upsample = base_upblock.upsamplers is not None
1913
+
1914
+ # create model
1915
+ model = cls(
1916
+ in_channels=in_channels,
1917
+ out_channels=out_channels,
1918
+ prev_output_channel=prev_output_channels,
1919
+ ctrl_skip_channels=ctrl_skip_channelss,
1920
+ temb_channels=temb_channels,
1921
+ norm_num_groups=num_groups,
1922
+ resolution_idx=resolution_idx,
1923
+ has_crossattn=has_crossattn,
1924
+ transformer_layers_per_block=transformer_layers_per_block,
1925
+ num_attention_heads=num_attention_heads,
1926
+ cross_attention_dim=cross_attention_dim,
1927
+ add_upsample=add_upsample,
1928
+ upcast_attention=upcast_attention,
1929
+ )
1930
+
1931
+ # load weights
1932
+ model.resnets.load_state_dict(base_upblock.resnets.state_dict())
1933
+ if has_crossattn:
1934
+ model.attentions.load_state_dict(base_upblock.attentions.state_dict())
1935
+ if add_upsample:
1936
+ model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict())
1937
+ model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict())
1938
+
1939
+ return model
1940
+
1941
+ def freeze_base_params(self) -> None:
1942
+ """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
1943
+ tuning."""
1944
+ # Unfreeze everything
1945
+ for param in self.parameters():
1946
+ param.requires_grad = True
1947
+
1948
+ # Freeze base part
1949
+ base_parts = [self.resnets]
1950
+ if isinstance(self.attentions, nn.ModuleList): # attentions can be a list of Nones
1951
+ base_parts.append(self.attentions)
1952
+ if self.upsamplers is not None:
1953
+ base_parts.append(self.upsamplers)
1954
+ for part in base_parts:
1955
+ for param in part.parameters():
1956
+ param.requires_grad = False
1957
+
1958
+ def forward(
1959
+ self,
1960
+ hidden_states: Tensor,
1961
+ res_hidden_states_tuple_base: Tuple[Tensor, ...],
1962
+ res_hidden_states_tuple_ctrl: Tuple[Tensor, ...],
1963
+ temb: Tensor,
1964
+ encoder_hidden_states: Optional[Tensor] = None,
1965
+ conditioning_scale: Optional[float] = 1.0,
1966
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1967
+ attention_mask: Optional[Tensor] = None,
1968
+ upsample_size: Optional[int] = None,
1969
+ encoder_attention_mask: Optional[Tensor] = None,
1970
+ apply_control: bool = True,
1971
+ ) -> Tensor:
1972
+ if cross_attention_kwargs is not None:
1973
+ if cross_attention_kwargs.get("scale", None) is not None:
1974
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
1975
+
1976
+ is_freeu_enabled = (
1977
+ getattr(self, "s1", None)
1978
+ and getattr(self, "s2", None)
1979
+ and getattr(self, "b1", None)
1980
+ and getattr(self, "b2", None)
1981
+ )
1982
+
1983
+ def create_custom_forward(module, return_dict=None):
1984
+ def custom_forward(*inputs):
1985
+ if return_dict is not None:
1986
+ return module(*inputs, return_dict=return_dict)
1987
+ else:
1988
+ return module(*inputs)
1989
+
1990
+ return custom_forward
1991
+
1992
+ def maybe_apply_freeu_to_subblock(hidden_states, res_h_base):
1993
+ # FreeU: Only operate on the first two stages
1994
+ if is_freeu_enabled:
1995
+ return apply_freeu(
1996
+ self.resolution_idx,
1997
+ hidden_states,
1998
+ res_h_base,
1999
+ s1=self.s1,
2000
+ s2=self.s2,
2001
+ b1=self.b1,
2002
+ b2=self.b2,
2003
+ )
2004
+ else:
2005
+ return hidden_states, res_h_base
2006
+
2007
+ for resnet, attn, c2b, res_h_base, res_h_ctrl in zip(
2008
+ self.resnets,
2009
+ self.attentions,
2010
+ self.ctrl_to_base,
2011
+ reversed(res_hidden_states_tuple_base),
2012
+ reversed(res_hidden_states_tuple_ctrl),
2013
+ ):
2014
+ if apply_control:
2015
+ # print('up:', hidden_states.shape, res_h_ctrl.shape)
2016
+ hidden_states += c2b(res_h_ctrl) * conditioning_scale
2017
+
2018
+ hidden_states, res_h_base = maybe_apply_freeu_to_subblock(hidden_states, res_h_base)
2019
+ hidden_states = torch.cat([hidden_states, res_h_base], dim=1)
2020
+
2021
+ if self.training and self.gradient_checkpointing:
2022
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
2023
+ hidden_states = torch.utils.checkpoint.checkpoint(
2024
+ create_custom_forward(resnet),
2025
+ hidden_states,
2026
+ temb,
2027
+ **ckpt_kwargs,
2028
+ )
2029
+ else:
2030
+ hidden_states = resnet(hidden_states, temb)
2031
+
2032
+ if attn is not None:
2033
+ hidden_states = attn(
2034
+ hidden_states,
2035
+ encoder_hidden_states=encoder_hidden_states,
2036
+ cross_attention_kwargs=cross_attention_kwargs,
2037
+ attention_mask=attention_mask,
2038
+ encoder_attention_mask=encoder_attention_mask,
2039
+ return_dict=False,
2040
+ )[0]
2041
+
2042
+ if self.upsamplers is not None:
2043
+ hidden_states = self.upsamplers(hidden_states, upsample_size)
2044
+
2045
+ return hidden_states
2046
+
2047
+
2048
+ def make_zero_conv(in_channels, out_channels=None):
2049
+ return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))
2050
+
2051
+
2052
+ def zero_module(module):
2053
+ for p in module.parameters():
2054
+ nn.init.zeros_(p)
2055
+ return module
2056
+
2057
+
2058
+ def find_largest_factor(number, max_factor):
2059
+ factor = max_factor
2060
+ if factor >= number:
2061
+ return number
2062
+ while factor != 0:
2063
+ residual = number % factor
2064
+ if residual == 0:
2065
+ return factor
2066
+ factor -= 1
utils/modules.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from diffusers.models.unets.unet_2d_blocks import *
3
+
4
+ class UNetMidBlock2DCrossAttn(nn.Module):
5
+ def __init__(
6
+ self,
7
+ in_channels: int,
8
+ temb_channels: int,
9
+ out_channels: Optional[int] = None,
10
+ dropout: float = 0.0,
11
+ num_layers: int = 1,
12
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
13
+ resnet_eps: float = 1e-6,
14
+ resnet_time_scale_shift: str = "default",
15
+ resnet_act_fn: str = "swish",
16
+ resnet_groups: int = 32,
17
+ resnet_groups_out: Optional[int] = None,
18
+ resnet_pre_norm: bool = True,
19
+ num_attention_heads: int = 1,
20
+ output_scale_factor: float = 1.0,
21
+ cross_attention_dim: int = 1280,
22
+ dual_cross_attention: bool = False,
23
+ use_linear_projection: bool = False,
24
+ upcast_attention: bool = False,
25
+ attention_type: str = "default",
26
+ ):
27
+ super().__init__()
28
+
29
+ out_channels = out_channels or in_channels
30
+ self.in_channels = in_channels
31
+ self.out_channels = out_channels
32
+
33
+ self.has_cross_attention = True
34
+ self.num_attention_heads = num_attention_heads
35
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
36
+
37
+ # support for variable transformer layers per block
38
+ if isinstance(transformer_layers_per_block, int):
39
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
40
+
41
+ resnet_groups_out = resnet_groups_out or resnet_groups
42
+
43
+ # there is always at least one resnet
44
+ resnets = [
45
+ ResnetBlock2D(
46
+ in_channels=in_channels,
47
+ out_channels=out_channels,
48
+ temb_channels=temb_channels,
49
+ eps=resnet_eps,
50
+ groups=resnet_groups,
51
+ groups_out=resnet_groups_out,
52
+ dropout=dropout,
53
+ time_embedding_norm=resnet_time_scale_shift,
54
+ non_linearity=resnet_act_fn,
55
+ output_scale_factor=output_scale_factor,
56
+ pre_norm=resnet_pre_norm,
57
+ )
58
+ ]
59
+ attentions = []
60
+
61
+ for i in range(num_layers):
62
+ if not dual_cross_attention:
63
+ attentions.append(
64
+ Transformer2DModel(
65
+ num_attention_heads,
66
+ out_channels // num_attention_heads,
67
+ in_channels=out_channels,
68
+ num_layers=transformer_layers_per_block[i],
69
+ cross_attention_dim=cross_attention_dim,
70
+ norm_num_groups=resnet_groups_out,
71
+ use_linear_projection=use_linear_projection,
72
+ upcast_attention=upcast_attention,
73
+ attention_type=attention_type,
74
+ )
75
+ )
76
+ else:
77
+ attentions.append(
78
+ DualTransformer2DModel(
79
+ num_attention_heads,
80
+ out_channels // num_attention_heads,
81
+ in_channels=out_channels,
82
+ num_layers=1,
83
+ cross_attention_dim=cross_attention_dim,
84
+ norm_num_groups=resnet_groups,
85
+ )
86
+ )
87
+ resnets.append(
88
+ ResnetBlock2D(
89
+ in_channels=out_channels,
90
+ out_channels=out_channels,
91
+ temb_channels=temb_channels,
92
+ eps=resnet_eps,
93
+ groups=resnet_groups_out,
94
+ dropout=dropout,
95
+ time_embedding_norm=resnet_time_scale_shift,
96
+ non_linearity=resnet_act_fn,
97
+ output_scale_factor=output_scale_factor,
98
+ pre_norm=resnet_pre_norm,
99
+ )
100
+ )
101
+
102
+ self.attentions = nn.ModuleList(attentions)
103
+ self.resnets = nn.ModuleList(resnets)
104
+
105
+ self.gradient_checkpointing = False
106
+
107
+ def forward(
108
+ self,
109
+ hidden_states: torch.Tensor,
110
+ temb: Optional[torch.Tensor] = None,
111
+ encoder_hidden_states: Optional[torch.Tensor] = None,
112
+ attention_mask: Optional[torch.Tensor] = None,
113
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
114
+ encoder_attention_mask: Optional[torch.Tensor] = None,
115
+ ) -> torch.Tensor:
116
+ if cross_attention_kwargs is not None:
117
+ if cross_attention_kwargs.get("scale", None) is not None:
118
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
119
+
120
+ hidden_states = self.resnets[0](hidden_states, temb)
121
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
122
+ if self.training and self.gradient_checkpointing:
123
+
124
+ def create_custom_forward(module, return_dict=None):
125
+ def custom_forward(*inputs):
126
+ if return_dict is not None:
127
+ return module(*inputs, return_dict=return_dict)
128
+ else:
129
+ return module(*inputs)
130
+
131
+ return custom_forward
132
+
133
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
134
+ hidden_states = attn(
135
+ hidden_states,
136
+ encoder_hidden_states=encoder_hidden_states,
137
+ cross_attention_kwargs=cross_attention_kwargs,
138
+ attention_mask=attention_mask,
139
+ encoder_attention_mask=encoder_attention_mask,
140
+ return_dict=False,
141
+ )[0]
142
+ hidden_states = torch.utils.checkpoint.checkpoint(
143
+ create_custom_forward(resnet),
144
+ hidden_states,
145
+ temb,
146
+ **ckpt_kwargs,
147
+ )
148
+ else:
149
+ hidden_states = attn(
150
+ hidden_states,
151
+ encoder_hidden_states=encoder_hidden_states,
152
+ cross_attention_kwargs=cross_attention_kwargs,
153
+ attention_mask=attention_mask,
154
+ encoder_attention_mask=encoder_attention_mask,
155
+ return_dict=False,
156
+ )[0]
157
+ hidden_states = resnet(hidden_states, temb)
158
+
159
+ return hidden_states
utils/resampler.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2
+ # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3
+
4
+ import math
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange
9
+ from einops.layers.torch import Rearrange
10
+
11
+
12
+ # FFN
13
+ def FeedForward(dim, mult=4):
14
+ inner_dim = int(dim * mult)
15
+ return nn.Sequential(
16
+ nn.LayerNorm(dim),
17
+ nn.Linear(dim, inner_dim, bias=False),
18
+ nn.GELU(),
19
+ nn.Linear(inner_dim, dim, bias=False),
20
+ )
21
+
22
+
23
+ def reshape_tensor(x, heads):
24
+ bs, length, width = x.shape
25
+ # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
26
+ x = x.view(bs, length, heads, -1)
27
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
28
+ x = x.transpose(1, 2)
29
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
30
+ x = x.reshape(bs, heads, length, -1)
31
+ return x
32
+
33
+
34
+ class PerceiverAttention(nn.Module):
35
+ def __init__(self, *, dim, dim_head=64, heads=8):
36
+ super().__init__()
37
+ self.scale = dim_head**-0.5
38
+ self.dim_head = dim_head
39
+ self.heads = heads
40
+ inner_dim = dim_head * heads
41
+
42
+ self.norm1 = nn.LayerNorm(dim)
43
+ self.norm2 = nn.LayerNorm(dim)
44
+
45
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
46
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
47
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
48
+
49
+ def forward(self, x, latents):
50
+ """
51
+ Args:
52
+ x (torch.Tensor): image features
53
+ shape (b, n1, D)
54
+ latent (torch.Tensor): latent features
55
+ shape (b, n2, D)
56
+ """
57
+ x = self.norm1(x)
58
+ latents = self.norm2(latents)
59
+
60
+ b, l, _ = latents.shape
61
+
62
+ q = self.to_q(latents)
63
+ kv_input = torch.cat((x, latents), dim=-2)
64
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
65
+
66
+ q = reshape_tensor(q, self.heads)
67
+ k = reshape_tensor(k, self.heads)
68
+ v = reshape_tensor(v, self.heads)
69
+
70
+ # attention
71
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
72
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
73
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
74
+ out = weight @ v
75
+
76
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
77
+
78
+ return self.to_out(out)
79
+
80
+
81
+ class Resampler(nn.Module):
82
+ def __init__(
83
+ self,
84
+ dim=1280,
85
+ depth=4,
86
+ dim_head=64,
87
+ heads=20,
88
+ num_queries=16,
89
+ embedding_dim=512,
90
+ output_dim=2048,
91
+ ff_mult=4,
92
+ max_seq_len: int = 257, # CLIP tokens + CLS token
93
+ apply_pos_emb: bool = False,
94
+ num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
95
+ ):
96
+ super().__init__()
97
+ # self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
98
+
99
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
100
+
101
+ self.proj_in = nn.Linear(embedding_dim, dim)
102
+ self.proj_out = nn.Linear(dim, output_dim)
103
+ self.norm_out = nn.LayerNorm(output_dim)
104
+
105
+ # self.to_latents_from_mean_pooled_seq = (
106
+ # nn.Sequential(
107
+ # nn.LayerNorm(dim),
108
+ # nn.Linear(dim, dim * num_latents_mean_pooled),
109
+ # Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
110
+ # )
111
+ # if num_latents_mean_pooled > 0
112
+ # else None
113
+ # )
114
+
115
+ self.layers = nn.ModuleList([])
116
+ for _ in range(depth):
117
+ self.layers.append(
118
+ nn.ModuleList(
119
+ [
120
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
121
+ FeedForward(dim=dim, mult=ff_mult),
122
+ ]
123
+ )
124
+ )
125
+
126
+ def forward(self, x):
127
+ # if self.pos_emb is not None:
128
+ # n, device = x.shape[1], x.device
129
+ # pos_emb = self.pos_emb(torch.arange(n, device=device))
130
+ # x = x + pos_emb
131
+
132
+ latents = self.latents.repeat(x.size(0), 1, 1)
133
+
134
+ # print(self.latents.size(), x.size(), latents.size())
135
+
136
+ x = self.proj_in(x)
137
+
138
+ # if self.to_latents_from_mean_pooled_seq:
139
+ # meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
140
+ # meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
141
+ # latents = torch.cat((meanpooled_latents, latents), dim=-2)
142
+
143
+ for attn, ff in self.layers:
144
+ latents = attn(x, latents) + latents
145
+ latents = ff(latents) + latents
146
+
147
+ latents = self.proj_out(latents)
148
+ return self.norm_out(latents)
149
+
150
+
151
+ def masked_mean(t, *, dim, mask=None):
152
+ if mask is None:
153
+ return t.mean(dim=dim)
154
+
155
+ denom = mask.sum(dim=dim, keepdim=True)
156
+ mask = rearrange(mask, "b n -> b n 1")
157
+ masked_t = t.masked_fill(~mask, 0.0)
158
+
159
+ return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
utils/resize.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import PIL
3
+ import cv2, math,os
4
+ import numpy as np
5
+
6
+ # 最短边为1024,并进行中心裁剪
7
+ def resize_image_pil(input_image, min_side=1024):
8
+
9
+ # 获取图像的宽度和高度
10
+ width, height = input_image.size
11
+
12
+ # 计算缩放比例
13
+ scale = min_side / min(height, width)
14
+
15
+ # 计算新的尺寸
16
+ new_width = int(width * scale)
17
+ new_height = int(height * scale)
18
+
19
+ # 调整图像大小
20
+ resized_image = input_image.resize((new_width, new_height), Image.ANTIALIAS)
21
+
22
+ # 计算中心裁剪的位置
23
+ crop_top = (new_height - min_side) // 2
24
+ crop_left = (new_width - min_side) // 2
25
+
26
+ # 进行中心裁剪
27
+ cropped_image = resized_image.crop((crop_left, crop_top, crop_left + min_side, crop_top + min_side))
28
+
29
+ return cropped_image
30
+
31
+ def resize_image_cv2(input_image, min_side=1024, ):
32
+ # cv2读取的image
33
+ (height, width, _ )= input_image.shape
34
+ # print(height, width)
35
+ scale = min_side / min(height, width)
36
+
37
+ # 计算新的尺寸
38
+ new_width = int(width * scale)
39
+ new_height = int(height * scale)
40
+ input_image =cv2.resize(input_image, (new_width, new_height))
41
+
42
+ # 计算中心裁剪的位置
43
+ crop_top = (new_height - min_side) // 2
44
+ crop_left = (new_width - min_side) // 2
45
+
46
+ # 进行中心裁剪
47
+ image = input_image[crop_top:crop_top + min_side, crop_left:crop_left + min_side]
48
+
49
+ return image
50
+
51
+
52
+ def resize_img0(input_image, max_side=1280, min_side=1024,
53
+ mode=Image.BILINEAR, base_pixel_number=64):
54
+
55
+ w, h = input_image.size
56
+
57
+ ratio = min_side / min(h, w)
58
+ w, h = round(ratio*w), round(ratio*h)
59
+ ratio = max_side / max(h, w)
60
+ input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
61
+ w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
62
+ h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
63
+
64
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
65
+
66
+
67
+ return input_image
68
+
69
+ def resize_img1(input_image, max_side=1280, min_side=1024,
70
+ mode=Image.BILINEAR, base_pixel_number=64):
71
+
72
+ w, h = input_image.size
73
+
74
+ ratio = min_side / w
75
+ w, h = round(ratio*w), round(ratio*h)
76
+ input_image = input_image.resize([w, h], mode)
77
+
78
+ w_resize_new = (w // base_pixel_number) * base_pixel_number
79
+ h_resize_new = (h // base_pixel_number) * base_pixel_number
80
+
81
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
82
+
83
+
84
+ return input_image
85
+
86
+
87
+ def resize_img(input_image, max_side=1024, min_side=1024, size=None,
88
+ pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
89
+ w, h = input_image.size
90
+ if size is not None:
91
+ w_resize_new, h_resize_new = size
92
+ else:
93
+ ratio = min_side / min(h, w)
94
+ w, h = round(ratio * w), round(ratio * h)
95
+ ratio = max_side / max(h, w)
96
+ input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
97
+ w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
98
+ h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
99
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
100
+
101
+ if pad_to_max_side:
102
+ res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
103
+ offset_x = (max_side - w_resize_new) // 2
104
+ offset_y = (max_side - h_resize_new) // 2
105
+ res[offset_y:offset_y + h_resize_new, offset_x:offset_x + w_resize_new] = np.array(input_image)[:, :, :3]
106
+ input_image = Image.fromarray(res)
107
+ return input_image
utils/tools.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, json
2
+ import cv2
3
+ import glob
4
+ import numpy as np
5
+ from PIL import Image
6
+ import torch
7
+
8
+ def im_resize(original_image, short_len=1024):
9
+ h, w = original_image.shape[:-1]
10
+ if min(h, w) != short_len:
11
+ if h > w:
12
+ out_size = (short_len, int(h/w*short_len))
13
+ else:
14
+ out_size = (int(w/h*short_len), short_len)
15
+ else:
16
+ out_size = w, h
17
+
18
+ return cv2.resize(original_image, out_size)
19
+
20
+ def pixelize(image, block_size=64):
21
+ # 获取图像的宽度和高度
22
+ height, width, _ = image.shape
23
+
24
+ # 计算新图像的宽度和高度,使得每个块为 block_size x block_size 的大小
25
+ new_width = (width // block_size) * block_size
26
+ new_height = (height // block_size) * block_size
27
+
28
+ # 缩放图像以匹配新的宽度和高度
29
+ resized_image = cv2.resize(image, (new_width, new_height))
30
+
31
+ # 将图像分割成块并用块的平均值替代
32
+ for i in range(0, new_height, block_size):
33
+ for j in range(0, new_width, block_size):
34
+ block = resized_image[i:i+block_size, j:j+block_size, :]
35
+ average_color = np.mean(block, axis=(0, 1), dtype=int)
36
+ resized_image[i:i+block_size, j:j+block_size, :] = average_color
37
+
38
+ # 将图像缩小回原始大小,以增加像素风格的效果
39
+ final_image = cv2.resize(resized_image, (width, height))
40
+
41
+ return final_image
42
+
43
+ def get_kps_bbox_faceid(w, h, json_path):
44
+ def get_new_kps_and_bbox(w, h, kps, bbox):
45
+ scale = 512/max(w, h)
46
+ pad = abs(w - h) * scale / 2
47
+ if w < h:
48
+ kps[:, 0] -= pad
49
+ bbox[0] -= pad
50
+ bbox[2] -= pad
51
+ elif h < w:
52
+ kps[:, 1] -= pad
53
+ bbox[1] -= pad
54
+ bbox[3] -= pad
55
+ kps /= scale
56
+ bbox /= scale
57
+ return kps, bbox
58
+
59
+ with open(json_path, 'r') as file:
60
+ data = json.load(file)
61
+ kps = np.array(data.get("kps"))
62
+ bbox = np.array(data.get("bbox"))
63
+ kps, bbox = get_new_kps_and_bbox(w, h, kps, bbox)
64
+ embedding = data.get("embedding")
65
+ face_id_embed = embedding / np.linalg.norm(embedding)
66
+ face_id_embed = torch.from_numpy(face_id_embed)
67
+ return kps, bbox, face_id_embed
68
+
69
+ def get_kps_and_face_id_embed(w, h, json_path):
70
+ def get_new_kps(w, h, kps):
71
+ scale = 512/max(w, h)
72
+ pad = abs(w - h) * scale / 2
73
+ if w < h:
74
+ kps[:, 0] -= pad
75
+ elif h < w:
76
+ kps[:, 1] -= pad
77
+ kps = kps / scale
78
+ return kps
79
+
80
+ with open(json_path, 'r') as file:
81
+ data = json.load(file)
82
+ kps = np.array(data.get("kps"))
83
+ kps = get_new_kps(w, h, kps)
84
+ embedding = data.get("embedding")
85
+ face_id_embed = embedding / np.linalg.norm(embedding)
86
+ face_id_embed = torch.from_numpy(face_id_embed)
87
+ return kps, face_id_embed
88
+
89
+ def get_face_id_embed(json_path):
90
+
91
+ with open(json_path, 'r') as file:
92
+ data = json.load(file)
93
+ embedding = data.get("embedding")
94
+ face_id_embed = embedding / np.linalg.norm(embedding)
95
+ face_id_embed = torch.from_numpy(face_id_embed)
96
+ return face_id_embed
97
+
98
+ def get_module_kohya_state_dict(module, prefix: str, dtype: torch.dtype, adapter_name: str = "default"):
99
+ kohya_ss_state_dict = {}
100
+ for peft_key, weight in module.items():
101
+ kohya_key = peft_key.replace("unet.base_model.model", prefix)
102
+ kohya_key = kohya_key.replace("lora_A", "lora_down")
103
+ kohya_key = kohya_key.replace("lora_B", "lora_up")
104
+ kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
105
+ kohya_ss_state_dict[kohya_key] = weight.to(dtype)
106
+ # Set alpha parameter
107
+ if "lora_down" in kohya_key:
108
+ alpha_key = f'{kohya_key.split(".")[0]}.alpha'
109
+ kohya_ss_state_dict[alpha_key] = torch.tensor(8).to(dtype)
110
+
111
+ return kohya_ss_state_dict
112
+
113
+ def get_module_kohya_state_dict_xs(module, dtype):
114
+ kohya_ss_state_dict = {}
115
+ for peft_key, weight in module.items():
116
+ if "mid_block" in peft_key:
117
+ peft_key = peft_key.replace('attentions', 'base_midblock.attentions')
118
+ elif "down_block" in peft_key:
119
+ peft_key = peft_key.replace('attentions', 'base_attentions')
120
+ if dtype == None:
121
+ kohya_ss_state_dict[peft_key] = weight
122
+ else:
123
+ kohya_ss_state_dict[peft_key] = weight.to(dtype)
124
+ return kohya_ss_state_dict
utils/utils.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ attn_maps = {}
7
+ def hook_fn(name):
8
+ def forward_hook(module, input, output):
9
+ if hasattr(module.processor, "attn_map"):
10
+ attn_maps[name] = module.processor.attn_map
11
+ del module.processor.attn_map
12
+
13
+ return forward_hook
14
+
15
+ def register_cross_attention_hook(unet):
16
+ for name, module in unet.named_modules():
17
+ if name.split('.')[-1].startswith('attn2'):
18
+ module.register_forward_hook(hook_fn(name))
19
+
20
+ return unet
21
+
22
+ def upscale(attn_map, target_size):
23
+ attn_map = torch.mean(attn_map, dim=0)
24
+ attn_map = attn_map.permute(1,0)
25
+ temp_size = None
26
+
27
+ for i in range(0,5):
28
+ scale = 2 ** i
29
+ if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
30
+ temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
31
+ break
32
+
33
+ assert temp_size is not None, "temp_size cannot is None"
34
+
35
+ attn_map = attn_map.view(attn_map.shape[0], *temp_size)
36
+
37
+ attn_map = F.interpolate(
38
+ attn_map.unsqueeze(0).to(dtype=torch.float32),
39
+ size=target_size,
40
+ mode='bilinear',
41
+ align_corners=False
42
+ )[0]
43
+
44
+ attn_map = torch.softmax(attn_map, dim=0)
45
+ return attn_map
46
+ def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
47
+
48
+ idx = 0 if instance_or_negative else 1
49
+ net_attn_maps = []
50
+
51
+ for name, attn_map in attn_maps.items():
52
+ attn_map = attn_map.cpu() if detach else attn_map
53
+ attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
54
+ attn_map = upscale(attn_map, image_size)
55
+ net_attn_maps.append(attn_map)
56
+
57
+ net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
58
+
59
+ return net_attn_maps
60
+
61
+ def attnmaps2images(net_attn_maps):
62
+
63
+ #total_attn_scores = 0
64
+ images = []
65
+
66
+ for attn_map in net_attn_maps:
67
+ attn_map = attn_map.cpu().numpy()
68
+ #total_attn_scores += attn_map.mean().item()
69
+
70
+ normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
71
+ normalized_attn_map = normalized_attn_map.astype(np.uint8)
72
+ #print("norm: ", normalized_attn_map.shape)
73
+ image = Image.fromarray(normalized_attn_map)
74
+
75
+ #image = fix_save_attn_map(attn_map)
76
+ images.append(image)
77
+
78
+ #print(total_attn_scores)
79
+ return images
80
+
81
+ def is_torch2_available():
82
+ return hasattr(F, "scaled_dot_product_attention")
83
+
84
+ def get_generator(seed, device):
85
+
86
+ if seed is not None:
87
+ if isinstance(seed, list):
88
+ generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
89
+ else:
90
+ generator = torch.Generator(device).manual_seed(seed)
91
+ else:
92
+ generator = None
93
+
94
+ return generator