Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, List | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import CONFIG_NAME | |
class PipelineCallback(ConfigMixin): | |
""" | |
Base class for all the official callbacks used in a pipeline. This class provides a structure for implementing | |
custom callbacks and ensures that all callbacks have a consistent interface. | |
Please implement the following: | |
`tensor_inputs`: This should return a list of tensor inputs specific to your callback. You will only be able to | |
include | |
variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. | |
`callback_fn`: This method defines the core functionality of your callback. | |
""" | |
config_name = CONFIG_NAME | |
def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None): | |
super().__init__() | |
if (cutoff_step_ratio is None and cutoff_step_index is None) or ( | |
cutoff_step_ratio is not None and cutoff_step_index is not None | |
): | |
raise ValueError("Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.") | |
if cutoff_step_ratio is not None and ( | |
not isinstance(cutoff_step_ratio, float) or not (0.0 <= cutoff_step_ratio <= 1.0) | |
): | |
raise ValueError("cutoff_step_ratio must be a float between 0.0 and 1.0.") | |
def tensor_inputs(self) -> List[str]: | |
raise NotImplementedError(f"You need to set the attribute `tensor_inputs` for {self.__class__}") | |
def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]: | |
raise NotImplementedError(f"You need to implement the method `callback_fn` for {self.__class__}") | |
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: | |
return self.callback_fn(pipeline, step_index, timestep, callback_kwargs) | |
class MultiPipelineCallbacks: | |
""" | |
This class is designed to handle multiple pipeline callbacks. It accepts a list of PipelineCallback objects and | |
provides a unified interface for calling all of them. | |
""" | |
def __init__(self, callbacks: List[PipelineCallback]): | |
self.callbacks = callbacks | |
def tensor_inputs(self) -> List[str]: | |
return [input for callback in self.callbacks for input in callback.tensor_inputs] | |
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: | |
""" | |
Calls all the callbacks in order with the given arguments and returns the final callback_kwargs. | |
""" | |
for callback in self.callbacks: | |
callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs) | |
return callback_kwargs | |
class SDCFGCutoffCallback(PipelineCallback): | |
""" | |
Callback function for Stable Diffusion Pipelines. After certain number of steps (set by `cutoff_step_ratio` or | |
`cutoff_step_index`), this callback will disable the CFG. | |
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step. | |
""" | |
tensor_inputs = ["prompt_embeds"] | |
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: | |
cutoff_step_ratio = self.config.cutoff_step_ratio | |
cutoff_step_index = self.config.cutoff_step_index | |
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio | |
cutoff_step = ( | |
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) | |
) | |
if step_index == cutoff_step: | |
prompt_embeds = callback_kwargs[self.tensor_inputs[0]] | |
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens. | |
pipeline._guidance_scale = 0.0 | |
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds | |
return callback_kwargs | |
class SDXLCFGCutoffCallback(PipelineCallback): | |
""" | |
Callback function for Stable Diffusion XL Pipelines. After certain number of steps (set by `cutoff_step_ratio` or | |
`cutoff_step_index`), this callback will disable the CFG. | |
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step. | |
""" | |
tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"] | |
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: | |
cutoff_step_ratio = self.config.cutoff_step_ratio | |
cutoff_step_index = self.config.cutoff_step_index | |
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio | |
cutoff_step = ( | |
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) | |
) | |
if step_index == cutoff_step: | |
prompt_embeds = callback_kwargs[self.tensor_inputs[0]] | |
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens. | |
add_text_embeds = callback_kwargs[self.tensor_inputs[1]] | |
add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens | |
add_time_ids = callback_kwargs[self.tensor_inputs[2]] | |
add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector | |
pipeline._guidance_scale = 0.0 | |
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds | |
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds | |
callback_kwargs[self.tensor_inputs[2]] = add_time_ids | |
return callback_kwargs | |
class IPAdapterScaleCutoffCallback(PipelineCallback): | |
""" | |
Callback function for any pipeline that inherits `IPAdapterMixin`. After certain number of steps (set by | |
`cutoff_step_ratio` or `cutoff_step_index`), this callback will set the IP Adapter scale to `0.0`. | |
Note: This callback mutates the IP Adapter attention processors by setting the scale to 0.0 after the cutoff step. | |
""" | |
tensor_inputs = [] | |
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: | |
cutoff_step_ratio = self.config.cutoff_step_ratio | |
cutoff_step_index = self.config.cutoff_step_index | |
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio | |
cutoff_step = ( | |
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) | |
) | |
if step_index == cutoff_step: | |
pipeline.set_ip_adapter_scale(0.0) | |
return callback_kwargs |