SciLinguaBot_9 / app.py
RAMYASRI-39's picture
Update app.py
69c716d verified
raw
history blame
12.6 kB
import requests
import gradio as gr
from ragatouille import RAGPretrainedModel
import logging
from pathlib import Path
from time import perf_counter
from sentence_transformers import CrossEncoder
from huggingface_hub import InferenceClient
from jinja2 import Environment, FileSystemLoader
import numpy as np
from os import getenv
from backend.query_llm import generate_hf, generate_qwen
from backend.semantic_search import table, retriever
from huggingface_hub import InferenceClient
# Bhashini API translation function
api_key = getenv('API_KEY')
user_id = getenv('USER_ID')
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
"""Translates text from source language to target language using the Bhashini API."""
if not text.strip():
print('Input text is empty. Please provide valid text for translation.')
return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
else:
print('Input text - ',text)
print(f'Starting translation process from {from_code} to {to_code}...')
print(f'Starting translation process from {from_code} to {to_code}...')
gr.Warning(f'Translating to {to_code}...')
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
headers = {
"Content-Type": "application/json",
"userID": user_id,
"ulcaApiKey": api_key
}
payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
}
print('Sending initial request to get the pipeline...')
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
print(f'Error in initial request: {response.status_code}')
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
print('Initial request successful, processing response...')
response_data = response.json()
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
print(f'Service ID: {service_id}, Callback URL: {callback_url}')
headers2 = {
"Content-Type": "application/json",
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
}
compute_payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
"inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
}
print(f'Sending translation request with text: "{text}"')
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
if compute_response.status_code != 200:
print(f'Error in translation request: {compute_response.status_code}')
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
print('Translation request successful, processing translation...')
compute_response_data = compute_response.json()
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
print(f'Translation successful. Translated content: "{translated_content}"')
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# Existing chatbot functions
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
# def add_text(history, text):
# history = [] if history is None else history
# history = history + [(text, None)]
# return history, gr.Textbox(value="", interactive=False)
def bot(history, cross_encoder):
top_rerank = 25
top_k_rank = 20
query = history[-1][0] if history else ''
print('\nQuery: ',query )
print('\nHistory:',history)
if not query:
gr.Warning("Please submit a non-empty string as a prompt")
raise ValueError("Empty string was submitted")
logger.warning('Retrieving documents...')
if cross_encoder == '(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
documents_full = RAG_db.search(query, k=top_k_rank)
documents = [item['content'] for item in documents_full]
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
generate_fn = generate_hf
history[-1][1] = ""
for character in generate_fn(prompt, history[:-1]):
history[-1][1] = character
yield history, prompt_html
else:
document_start = perf_counter()
query_vec = retriever.encode(query)
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
query_doc_pair = [[query, doc] for doc in documents]
if cross_encoder == '(FAST) MiniLM-L6v2':
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
elif cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
document_time = perf_counter() - document_start
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
#generate_fn = generate_hf
generate_fn=generate_qwen
# Create a new history entry instead of modifying the tuple directly
new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
output=''
# for character in generate_fn(prompt, history[:-1]):
# #new_history[-1] = (query, character)
# output+=character
output=generate_fn(prompt, history[:-1])
print('Output:',output)
new_history[-1] = (prompt, output) #query replaced with prompt
print('New History',new_history)
#print('prompt html',prompt_html)# Update the last tuple with new text
history_list = list(history[-1])
history_list[1] = output # Assuming `character` is what you want to assign
# Update the history with the modified list converted back to a tuple
history[-1] = tuple(history_list)
#history[-1][1] = character
# yield new_history, prompt_html
yield history, prompt_html
# new_history,prompt_html
# history[-1][1] = ""
# for character in generate_fn(prompt, history[:-1]):
# history[-1][1] = character
# yield history, prompt_html
#def translate_text(response_text, selected_language):
def translate_text(selected_language,history):
iso_language_codes = {
"Hindi": "hi",
"Gom": "gom",
"Kannada": "kn",
"Dogri": "doi",
"Bodo": "brx",
"Urdu": "ur",
"Tamil": "ta",
"Kashmiri": "ks",
"Assamese": "as",
"Bengali": "bn",
"Marathi": "mr",
"Sindhi": "sd",
"Maithili": "mai",
"Punjabi": "pa",
"Malayalam": "ml",
"Manipuri": "mni",
"Telugu": "te",
"Sanskrit": "sa",
"Nepali": "ne",
"Santali": "sat",
"Gujarati": "gu",
"Odia": "or"
}
to_code = iso_language_codes[selected_language]
response_text = history[-1][1] if history else ''
print('response_text for translation',response_text)
translation = bhashini_translate(response_text, to_code=to_code)
return translation['translated_content']
# Gradio interface
with gr.Blocks(theme='gradio/soft') as CHATBOT:
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=10):
gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9 SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
with gr.Column(scale=3):
gr.Image(value='logo.png', height=200, width=200)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
language_dropdown = gr.Dropdown(
choices=[
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
"Gujarati", "Odia"
],
value="Hindi", # default to Hindi
label="Select Language for Translation"
)
prompt_html = gr.HTML()
translated_textbox = gr.Textbox(label="Translated Response")
def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
print('History state',history_state)
history = history_state
history.append((txt, ""))
#history_state.value=(history)
# Call bot function
# bot_output = list(bot(history, cross_encoder))
bot_output = next(bot(history, cross_encoder))
print('bot_output',bot_output)
#history, prompt_html = bot_output[-1]
history, prompt_html = bot_output
print('History',history)
# Update the history state
history_state[:] = history
# Translate text
translated_text = translate_text(language_dropdown, history)
return history, prompt_html, translated_text
txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?','WHAT IS COVALENT BOND?',
'EXPLAIN GOLGI APPARATUS']
gr.Examples(examples, txt)
# Launch the Gradio application
CHATBOT.launch(share=True,debug=True)