File size: 12,597 Bytes
e74bd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc41f9
db81e26
 
e74bd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c716d
 
e74bd37
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import requests
import gradio as gr
from ragatouille import RAGPretrainedModel
import logging
from pathlib import Path
from time import perf_counter
from sentence_transformers import CrossEncoder
from huggingface_hub import InferenceClient
from jinja2 import Environment, FileSystemLoader
import numpy as np
from os import getenv
from backend.query_llm import generate_hf, generate_qwen
from backend.semantic_search import table, retriever
from huggingface_hub import InferenceClient


# Bhashini API translation function
api_key = getenv('API_KEY')
user_id = getenv('USER_ID')

def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
    """Translates text from source language to target language using the Bhashini API."""
    
    if not text.strip():
        print('Input text is empty. Please provide valid text for translation.')
        return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
    else:
        print('Input text - ',text)
    print(f'Starting translation process from {from_code} to {to_code}...')
    print(f'Starting translation process from {from_code} to {to_code}...')
    gr.Warning(f'Translating to {to_code}...')
    
    url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
    headers = {
        "Content-Type": "application/json",
        "userID": user_id,
        "ulcaApiKey": api_key
    }
    payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
        "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
    }
    
    print('Sending initial request to get the pipeline...')
    response = requests.post(url, json=payload, headers=headers)
    
    if response.status_code != 200:
        print(f'Error in initial request: {response.status_code}')
        return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

    print('Initial request successful, processing response...')
    response_data = response.json()
    service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
    callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
    print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
    headers2 = {
        "Content-Type": "application/json",
        response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
    }
    compute_payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
        "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
    }
    
    print(f'Sending translation request with text: "{text}"')
    compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
    if compute_response.status_code != 200:
        print(f'Error in translation request: {compute_response.status_code}')
        return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
    print('Translation request successful, processing translation...')
    compute_response_data = compute_response.json()
    translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
    print(f'Translation successful. Translated content: "{translated_content}"')
    return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}


# Existing chatbot functions
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')

# def add_text(history, text):
#     history = [] if history is None else history
#     history = history + [(text, None)]
#     return history, gr.Textbox(value="", interactive=False)

def bot(history, cross_encoder):

    top_rerank = 25
    top_k_rank = 20
    query = history[-1][0] if history else ''
    print('\nQuery: ',query )
    print('\nHistory:',history)
    if not query:
        gr.Warning("Please submit a non-empty string as a prompt")
        raise ValueError("Empty string was submitted")

    logger.warning('Retrieving documents...')
    
    if cross_encoder == '(HIGH ACCURATE) ColBERT':
        gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
        RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        documents_full = RAG_db.search(query, k=top_k_rank)
        
        documents = [item['content'] for item in documents_full]
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        generate_fn = generate_hf
    
        history[-1][1] = ""
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character
            yield history, prompt_html
    else:
        document_start = perf_counter()
    
        query_vec = retriever.encode(query)
        doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
    
        documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
        documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
    
        query_doc_pair = [[query, doc] for doc in documents]
        if cross_encoder == '(FAST) MiniLM-L6v2':
            cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
        elif cross_encoder == '(ACCURATE) BGE reranker':
            cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
        
        cross_scores = cross_encoder1.predict(query_doc_pair)
        sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
        
        documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
    
        document_time = perf_counter() - document_start
    
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        #generate_fn = generate_hf
        generate_fn=generate_qwen
        # Create a new history entry instead of modifying the tuple directly
        new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
        output=''
        # for character in generate_fn(prompt, history[:-1]):
        #     #new_history[-1] = (query, character) 
        #     output+=character
        output=generate_fn(prompt, history[:-1])
        
        print('Output:',output)
        new_history[-1] = (prompt, output) #query replaced with prompt
        print('New History',new_history)
        #print('prompt html',prompt_html)# Update the last tuple with new text
        
        history_list = list(history[-1])
        history_list[1] = output  # Assuming `character` is what you want to assign
        # Update the history with the modified list converted back to a tuple
        history[-1] = tuple(history_list)

            #history[-1][1] = character
        # yield new_history, prompt_html
        yield history, prompt_html
         # new_history,prompt_html
        # history[-1][1] = ""
        # for character in generate_fn(prompt, history[:-1]):
        #     history[-1][1] = character
        #     yield history, prompt_html

#def translate_text(response_text, selected_language):
    
def translate_text(selected_language,history):
    
    iso_language_codes = {
        "Hindi": "hi",
        "Gom": "gom",
        "Kannada": "kn",
        "Dogri": "doi",
        "Bodo": "brx",
        "Urdu": "ur",
        "Tamil": "ta",
        "Kashmiri": "ks",
        "Assamese": "as",
        "Bengali": "bn",
        "Marathi": "mr",
        "Sindhi": "sd",
        "Maithili": "mai",
        "Punjabi": "pa",
        "Malayalam": "ml",
        "Manipuri": "mni",
        "Telugu": "te",
        "Sanskrit": "sa",
        "Nepali": "ne",
        "Santali": "sat",
        "Gujarati": "gu",
        "Odia": "or"
    }
    
    to_code = iso_language_codes[selected_language]
    response_text = history[-1][1] if history else ''
    print('response_text for translation',response_text)
    translation = bhashini_translate(response_text, to_code=to_code)
    return translation['translated_content']
   

# Gradio interface
with gr.Blocks(theme='gradio/soft') as CHATBOT:
    history_state = gr.State([])
    with gr.Row():
        with gr.Column(scale=10):
            gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9 SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
            gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
            gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")

        with gr.Column(scale=3):
            gr.Image(value='logo.png', height=200, width=200)

    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                       'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
        bubble_full_width=False,
        show_copy_button=True,
        show_share_button=True,
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=3,
            show_label=False,
            placeholder="Enter text and press enter",
            container=False,
        )
        txt_btn = gr.Button(value="Submit text", scale=1)
    
    cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
    language_dropdown = gr.Dropdown(
        choices=[
            "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
            "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
            "Gujarati", "Odia"
        ],
        value="Hindi",  # default to Hindi
        label="Select Language for Translation"
    )
    
    prompt_html = gr.HTML()
    
    translated_textbox = gr.Textbox(label="Translated Response")
    def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
        print('History state',history_state)
        history = history_state
        history.append((txt, ""))
        #history_state.value=(history)
        
        # Call bot function
        # bot_output = list(bot(history, cross_encoder))
        bot_output = next(bot(history, cross_encoder))
        print('bot_output',bot_output)
        #history, prompt_html = bot_output[-1]
        history, prompt_html = bot_output
        print('History',history)
        # Update the history state
        history_state[:] = history
        
        # Translate text
        translated_text = translate_text(language_dropdown, history)
        return history, prompt_html, translated_text

    txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
    txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])

    examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?','WHAT IS COVALENT BOND?',
            'EXPLAIN GOLGI APPARATUS']            

    gr.Examples(examples, txt)


# Launch the Gradio application
CHATBOT.launch(share=True,debug=True)