File size: 26,548 Bytes
ebddec3 8316de1 ebddec3 8316de1 ebddec3 c2cf2c0 ebddec3 8316de1 ebddec3 8316de1 ebddec3 8316de1 ebddec3 8316de1 ebddec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
# -*- coding: utf-8 -*-
"""Survey_Analysis_v_3_2_86.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1VOlSQ6kva-BiGfJc7b3BwlKBegP13tdS
"""
#1 - https://www.kaggle.com/code/ramjasmaurya/financial-sentiment-analysis
#2 - https://www.kaggle.com/code/adarshbiradar/sentiment-analysis-using-bert
import streamlit
#pip install pygal
#pip install squarify
# Commented out IPython magic to ensure Python compatibility.
import numpy as np
import pandas as pd
#import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import pygal as py
import squarify as sq
import matplotlib
plt.rcParams["figure.figsize"] = (20,15)
matplotlib.rc('xtick', labelsize=7)
matplotlib.rc('ytick', labelsize=7)
font = {'family' : 'normal',
'weight' : 'bold',
'size' : 5}
matplotlib.rc('font', **font)
from sklearn.feature_extraction.text import CountVectorizer
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
# %matplotlib inline
df=pd.read_csv("/content/gen-data.csv",engine="python",encoding="ISO-8859-1")
df
col1=df.keys()[0]
col2=df.keys()[1]
col2
df2=pd.DataFrame([[col1, col2]], columns=list([col1,col2]), index=[4845])
df=df.append(df2, ignore_index=True).set_axis(['sentiment', 'news'], axis=1, inplace=False)
df
df = df.replace("neutral","neutral")
sns.countplot(y="sentiment",data=df)
df.isnull().sum()
from textblob import TextBlob
def preprocess(ReviewText):
ReviewText = ReviewText.str.replace("(<br/>)", "")
ReviewText = ReviewText.str.replace('(<a).*(>).*(</a>)', '')
ReviewText = ReviewText.str.replace('(&)', '')
ReviewText = ReviewText.str.replace('(>)', '')
ReviewText = ReviewText.str.replace('(<)', '')
ReviewText = ReviewText.str.replace('(\xa0)', ' ')
return ReviewText
df['Review Text'] = preprocess(df['news'])
df['polarity'] = df['news'].map(lambda text: TextBlob(text).sentiment.polarity)
df['news_len'] = df['news'].astype(str).apply(len)
df['word_count'] = df['news'].apply(lambda x: len(str(x).split()))
df
print('top 4 random reviews with the highest positive sentiment polarity: \n')
df1=df.drop_duplicates(subset=['Review Text'])
cl = df1.loc[df1.polarity == 1, ['Review Text']].sample(4).values
for c in cl:
print(c[0])
print('5 random reviews with the most neutral sentiment(zero) polarity: \n')
cl1 = df.loc[df.polarity == 0, ['Review Text']].sample(5).values
for c in cl1:
print(c[0])
print('5 reviews with the most negative polarity having polarity lesser than -0.80: \n')
cl3 = df.loc[df.polarity <= -0.80, ['Review Text']].sample(5).values
for c in cl3:
print(c[0])
sns.boxplot(df["polarity"],palette="rainbow",data=df)
df['polarity'].plot(
kind='hist',
bins=50,
color="peru",
title='Sentiment Polarity Distribution');plt.show()
p_s=df[df["polarity"]>0].count()["sentiment"]
neu_s=df[df["polarity"]==0].count()["sentiment"]
neg_s=df[df["polarity"]<0].count()["sentiment"]
# Setting labels for items in Chart
sentiment = ['positive_sentiment',"neutral_sentiment","negative_sentiment"]
# Setting size in Chart based on
# given values
values = [p_s,neu_s,neg_s]
# colors
colors = ['#FF0000', 'olive', '#FFFF00']
# explosion
explode = (0.05, 0.05, 0.05)
# Pie Chart
plt.pie(values, colors=colors, labels=sentiment,
autopct='%1.1f%%', pctdistance=0.85,
explode=explode)
# draw circle
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
fig = plt.gcf()
# Adding Circle in Pie chart
fig.gca().add_artist(centre_circle)
# Adding Title of chart
plt.title('count of polarity as per sentiment')
# Displaing Chart
plt.show()
df.plot.box(y=["word_count"],color="hotpink")
df['word_count'].plot(
kind='hist',
bins=100,
color="orange",
title='Review Text Word Count Distribution');plt.show()
sns.boxenplot(x="news_len",data=df)
plt.show()
df['news_len'].plot(
kind='hist',
bins=50,
color="lightblue",
title='Review Text Word Count Distribution');plt.show()
fig = px.scatter(df, x="news_len", y="word_count", color="sentiment",
marginal_x="box", marginal_y="violin",
title="Click on the legend items!")
fig.show()
def get_top_n_words(corpus, n=None):
vec = CountVectorizer().fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]
common_words = get_top_n_words(df['Review Text'], 20)
for word, freq in common_words:
print(word, freq)
df1 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
df1.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
kind='bar',title='Top 20 words in review before removing stop words')
df1
def get_top_n_words(corpus, n=None):
vec = CountVectorizer(stop_words = 'english').fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]
common_words = get_top_n_words(df['Review Text'], 20)
for word, freq in common_words:
print(word, freq)
df2 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
df2.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(kind='bar', title='Top 20 words in review after removing stop words')
def get_top_n_bigram(corpus, n=None):
vec = CountVectorizer(ngram_range=(2, 2)).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]
common_words = get_top_n_bigram(df['Review Text'], 20)
for word, freq in common_words:
print(word, freq)
df3 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
df3.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
kind='bar',title='Top 20 bigrams in review before removing stop words')
def get_top_n_bigram(corpus, n=None):
vec = CountVectorizer(ngram_range=(2, 2), stop_words='english').fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]
common_words = get_top_n_bigram(df['Review Text'], 20)
for word, freq in common_words:
print(word, freq)
df4 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
df4.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
kind='bar', title='Top 20 bigrams in review after removing stop words')
def get_top_n_trigram(corpus, n=None):
vec = CountVectorizer(ngram_range=(3, 3)).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]
common_words = get_top_n_trigram(df['Review Text'], 20)
for word, freq in common_words:
print(word, freq)
df5 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
df5.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
kind='bar', title='Top 20 trigrams in review before removing stop words')
def get_top_n_trigram(corpus, n=None):
vec = CountVectorizer(ngram_range=(3, 3), stop_words='english').fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]
common_words = get_top_n_trigram(df['Review Text'], 20)
for word, freq in common_words:
print(word, freq)
df6 = pd.DataFrame(common_words, columns = ['ReviewText' ,'count'])
df6.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
kind='bar', title='Top 20 trigrams in review after removing stop words')
import nltk
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download('averaged_perceptron_tagger')
#import nltk
blob = TextBlob(str(df['Review Text']))
pos_df = pd.DataFrame(blob.tags, columns = ['word' , 'pos'])
pos_df = pos_df.pos.value_counts()[:20]
pos_df.plot(
kind='bar',
title='Top 20 Part-of-speech tagging for review corpus')
y0 = df.loc[df['sentiment'] == 'positive']['polarity']
y1 = df.loc[df['sentiment'] == 'negative']['polarity']
y2 = df.loc[df['sentiment'] == 'neutral']['polarity']
trace0 = go.Box(
y=y0,
name = 'positive',
marker = dict(
color = 'rgb(214, 12, 140)',
)
)
trace1 = go.Box(
y=y1,
name = 'negative',
marker = dict(
color = 'rgb(0, 128, 128)',
)
)
trace2 = go.Box(
y=y2,
name = 'neutral',
marker = dict(
color = 'rgb(10, 140, 208)',
)
)
data = [trace0, trace1, trace2]
layout = go.Layout(
title = "Polarity Boxplot according to sentiment"
)
go.Figure(data=data,layout=layout)
y0 = df.loc[df['sentiment'] == 'positive']['news_len']
y1 = df.loc[df['sentiment'] == 'negative']['news_len']
y2 = df.loc[df['sentiment'] == 'neutral']['news_len']
trace0 = go.Box(
y=y0,
name = 'positive',
marker = dict(
color = 'rgb(214, 12, 140)',
)
)
trace1 = go.Box(
y=y1,
name = 'negative',
marker = dict(
color = 'rgb(0, 128, 128)',
)
)
trace2 = go.Box(
y=y2,
name = 'neutral',
marker = dict(
color = 'rgb(10, 140, 208)',
)
)
data = [trace0, trace1, trace2]
layout = go.Layout(
title = "news length Boxplot by sentiment"
)
go.Figure(data=data,layout=layout)
xp = df.loc[df['sentiment'] == "positive", 'polarity']
xneu = df.loc[df['sentiment'] == "neutral", 'polarity']
xneg= df.loc[df['sentiment'] == "negative", 'polarity']
trace1 = go.Histogram(
x=xp, name='positive',
opacity=0.75
)
trace2 = go.Histogram(
x=xneu, name = 'neutral',
opacity=0.75
)
trace3 = go.Histogram(
x=xneg, name = 'negative',
opacity=0.75
)
data = [trace1, trace2,trace3]
layout = go.Layout(barmode='overlay', title='Distribution of Sentiment polarity')
go.Figure(data=data, layout=layout)
trace1 = go.Scatter(
x=df['polarity'], y=df['news_len'], mode='markers', name='points',
marker=dict(color='rgb(102,0,0)', size=2, opacity=0.4)
)
trace2 = go.Histogram2dContour(
x=df['polarity'], y=df['news_len'], name='density', ncontours=50,
colorscale='Hot', reversescale=True, showscale=False
)
trace3 = go.Histogram(
x=df['polarity'], name='Sentiment polarity density',
marker=dict(color='rgb(102,0,0)'),
yaxis='y2'
)
trace4 = go.Histogram(
y=df['news_len'], name='news length density', marker=dict(color='rgb(102,0,0)'),
xaxis='x2'
)
data = [trace1, trace2, trace3, trace4]
layout = go.Layout(
showlegend=False,
autosize=False,
width=600,
height=550,
xaxis=dict(
domain=[0, 0.85],
showgrid=False,
zeroline=False
),
yaxis=dict(
domain=[0, 0.85],
showgrid=False,
zeroline=False
),
margin=dict(
t=50
),
hovermode='x unified',
bargap=0,
xaxis2=dict(
domain=[0.85, 1],
showgrid=False,
zeroline=False
),
yaxis2=dict(
domain=[0.85, 1],
showgrid=False,
zeroline=False
)
)
go.Figure(data=data, layout=layout)
trace1 = go.Scatter(
x=df['polarity'], y=df['word_count'], mode='markers', name='points',
marker=dict(color='rgb(102,0,0)', size=2, opacity=0.4)
)
trace2 = go.Histogram2dContour(
x=df['polarity'], y=df['word_count'], name='density', ncontours=20,
colorscale='Hot', reversescale=True, showscale=False
)
trace3 = go.Histogram(
x=df['polarity'], name='Sentiment polarity density',
marker=dict(color='rgb(102,0,0)'),
yaxis='y2'
)
trace4 = go.Histogram(
y=df['word_count'], name='word count density', marker=dict(color='rgb(112,0,0)'),
xaxis='x2'
)
data = [trace1, trace2, trace3, trace4]
layout = go.Layout(
showlegend=False,
autosize=False,
width=600,
height=550,
xaxis=dict(
domain=[0, 0.85],
showgrid=False,
zeroline=False
),
yaxis=dict(
domain=[0, 0.85],
showgrid=False,
zeroline=False
),
margin=dict(
t=50
),
hovermode='closest',
bargap=0,
xaxis2=dict(
domain=[0.85, 1],
showgrid=False,
zeroline=False
),
yaxis2=dict(
domain=[0.85, 1],
showgrid=False,
zeroline=False
)
)
go.Figure(data=data, layout=layout)
#pip install scattertext
#pip install spacy
import scattertext as st
import spacy
nlp = spacy.blank("en")
nlp.add_pipe('sentencizer')
#nlp.add_pipe(nlp.create_pipe('sentencizer'))
corpus = st.CorpusFromPandas(df, category_col='sentiment', text_col='Review Text', nlp=nlp).build()
print(list(corpus.get_scaled_f_scores_vs_background().index[:20]))
term_freq_df = corpus.get_term_freq_df()
term_freq_df['positive_sentiment'] = corpus.get_scaled_f_scores('positive')
list(term_freq_df.sort_values(by='positive_sentiment', ascending=False).index[:20])
term_freq_df['neutral_sentiment'] = corpus.get_scaled_f_scores('neutral')
list(term_freq_df.sort_values(by='neutral_sentiment', ascending=False).index[:20])
term_freq_df['negative_sentiment'] = corpus.get_scaled_f_scores('negative')
list(term_freq_df.sort_values(by='negative_sentiment', ascending=False).index[:20])
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from collections import Counter
tfidf_vectorizer = TfidfVectorizer(stop_words='english', use_idf=True, smooth_idf=True)
reindexed_data = df['Review Text'].values
document_term_matrix = tfidf_vectorizer.fit_transform(reindexed_data)
n_topics = 10
lsa_model = TruncatedSVD(n_components=n_topics)
lsa_topic_matrix = lsa_model.fit_transform(document_term_matrix)
def get_keys(topic_matrix):
'''
returns an integer list of predicted topic
categories for a given topic matrix
'''
keys = topic_matrix.argmax(axis=1).tolist()
return keys
def keys_to_counts(keys):
'''
returns a tuple of topic categories and their
accompanying magnitudes for a given list of keys
'''
count_pairs = Counter(keys).items()
categories = [pair[0] for pair in count_pairs]
counts = [pair[1] for pair in count_pairs]
return (categories, counts)
lsa_keys = get_keys(lsa_topic_matrix)
lsa_categories, lsa_counts = keys_to_counts(lsa_keys)
def get_top_n_words(n, keys, document_term_matrix, tfidf_vectorizer):
'''
returns a list of n_topic strings, where each string contains the n most common
words in a predicted category, in order
'''
top_word_indices = []
for topic in range(n_topics):
temp_vector_sum = 0
for i in range(len(keys)):
if keys[i] == topic:
temp_vector_sum += document_term_matrix[i]
temp_vector_sum = temp_vector_sum.toarray()
top_n_word_indices = np.flip(np.argsort(temp_vector_sum)[0][-n:],0)
top_word_indices.append(top_n_word_indices)
top_words = []
for topic in top_word_indices:
topic_words = []
for index in topic:
temp_word_vector = np.zeros((1,document_term_matrix.shape[1]))
temp_word_vector[:,index] = 1
the_word = tfidf_vectorizer.inverse_transform(temp_word_vector)[0][0]
topic_words.append(the_word.encode('ascii').decode('utf-8'))
top_words.append(" ".join(topic_words))
return top_words
top_lsa=get_top_n_words(3, lsa_keys, document_term_matrix, tfidf_vectorizer)
for i in range(len(top_lsa)):
print("Topic {}: ".format(i+1), top_lsa[i])
top_3_words = get_top_n_words(3, lsa_keys, document_term_matrix, tfidf_vectorizer)
labels = ['Topic {}: \n'.format(i+1) + top_3_words[i] for i in lsa_categories]
fig, ax = plt.subplots(figsize=(16,8))
ax.bar(lsa_categories, lsa_counts,color="skyblue");
ax.set_xticks(lsa_categories,);
ax.set_xticklabels(labels, rotation=45, rotation_mode='default',color="olive");
ax.set_ylabel('Number of review text on topics');
ax.set_title('Count of LSA topics');
plt.show();
"""#---2----"""
df['sentiment'].value_counts()
from sklearn.model_selection import train_test_split
train,eva = train_test_split(df,test_size = 0.2)
#pip install simpletransformers
from simpletransformers.classification import ClassificationModel
# Create a Transformer Model BERT
model = ClassificationModel('bert', 'bert-base-cased', num_labels=3, args={'reprocess_input_data': True, 'overwrite_output_dir': True},use_cuda=False)
# 0,1,2 : positive,negative
def making_label(st):
if(st=='positive'):
return 0
elif(st=='neutral'):
return 2
else:
return 1
train['label'] = train['sentiment'].apply(making_label)
eva['label'] = eva['sentiment'].apply(making_label)
print(train.shape)
train_df = pd.DataFrame({
'text': train['news'][:1500].replace(r'\n', ' ', regex=True),
'label': train['label'][:1500]
})
eval_df = pd.DataFrame({
'text': eva['news'][-400:].replace(r'\n', ' ', regex=True),
'label': eva['label'][-400:]
})
model.train_model(train_df)
result, model_outputs, wrong_predictions = model.eval_model(eval_df)
result
model_outputs
len(wrong_predictions)
lst = []
for arr in model_outputs:
lst.append(np.argmax(arr))
true = eval_df['label'].tolist()
predicted = lst
import sklearn
mat = sklearn.metrics.confusion_matrix(true , predicted)
mat
df_cm = pd.DataFrame(mat, range(3), range(3))
sns.heatmap(df_cm, annot=True)
plt.show()
print(sklearn.metrics.classification_report(true,predicted,target_names=['positive','neutral','negative']))
sklearn.metrics.accuracy_score(true,predicted)
#Give your statement
def get_result(statement):
result = model.predict([statement])
pos = np.where(result[1][0] == np.amax(result[1][0]))
pos = int(pos[0])
sentiment_dict = {0:'positive',1:'negative',2:'neutral'}
print(sentiment_dict[pos])
return
## neutral statement
get_result("According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing .")
## positive statement
get_result("According to the company 's updated strategy for the years 2009-2012 , Basware targets a long-term net sales growth in the range of 20 % -40 % with an operating profit margin of 10 % -20 % of net sales .")
## negative statement
get_result('Sales in Finland decreased by 2.0 % , and international sales decreased by 9.3 % in terms of euros , and by 15.1 % in terms of local currencies .')
get_result("This company is growing like anything with 23% profit every year")
get_result("This company is not able to make any profit but make very less profit in last quarter")
get_result("The doctor treated well and the patient was very healthy")
get_result("the act of politicians is to serve and help needy and not to create ruck suck")
get_result("American burger is too good. Can't resisit to go and have one")
get_result("GDP per capita increased to double in India from 2013")
get_result("Indian economy is doing very good and will become super power one day.")
get_result("Indian economy is doing very good and will create millions of jobs in coming years")
get_result("Indian economy is not doing very good and need urgent reforms but we are pretty sure it will be very good in coming years")
get_result("Indian economy is doing very good.Indian economy is not doing very good ")
get_result("Indian economy is not doing very good. Indian economy will bounce back to become leading economy")
get_result("Indian economy is not doing very good. Urgent reforms is required to create new jobs and improve export")
get_result("The stock market of Indian economy is dangling too much")
"""#VADER"""
#pip install vaderSentiment
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
obj = SentimentIntensityAnalyzer()
sentence = "Ram is really good "
sentiment_dict = obj.polarity_scores(sentence)
print(sentiment_dict)
#check this
sentence = "Ram is better "
sentiment_dict = obj.polarity_scores(sentence)
print(sentiment_dict)
sentence = "Rahul is really bad"
sentiment_dict = obj.polarity_scores(sentence)
print(sentiment_dict)
#punctuation
print(obj.polarity_scores('Ram is good boy'))
print(obj.polarity_scores('Ram is good boy!'))
print(obj.polarity_scores('Ram is good boy!!'))
#capitalization
print(obj.polarity_scores('Ram is good'))
print(obj.polarity_scores('Ram is GOOD'))
#degree
print(obj.polarity_scores('Ram is good'))
print(obj.polarity_scores('Ram is better'))
print(obj.polarity_scores('Ram is best'))
print(obj.polarity_scores('Ram is bad'))
print(obj.polarity_scores('Ram is worse'))
print(obj.polarity_scores('Ram is worst'))
#conjuction
print(obj.polarity_scores('Ram is good'))
print(obj.polarity_scores('Ram is good, but he is also naughty sometimes'))
#slang
print(obj.polarity_scores("That Hotel"))
print(obj.polarity_scores("That Hotel SUX"))
print(obj.polarity_scores("That Hotel SUCKS"))
#emoticons
print(obj.polarity_scores("Your :) is the most beautiful thing I have ever seen"))
print(obj.polarity_scores("Your smile is the most beautiful thing I have ever seen"))
print(obj.polarity_scores("Your :( is the worst thing I have ever seen"))
print(obj.polarity_scores("Your smile is the worst thing I have ever seen"))
#https://360digitmg.com/blog/bert-variants-and-their-differences
#https://simpletransformers.ai/docs/classification-specifics/#supported-model-types Official reference
"""#3.a Using FINBERT Model"""
#PPT
#https://medium.com/@benjamin_joesy/finbert-financial-sentiment-analysis-with-bert-acf695b64ac6
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
# tested in transformers==4.18.0
import transformers
transformers.__version__
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3)
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
results = nlp(['growth is strong and we have plenty of liquidity.',
'there is a shortage of capital, and we need extra financing.',
'formulation patents might protect Vasotec to a limited extent.'])
results
"""#FINBERT ESG"""
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-esg',num_labels=4)
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-esg')
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
results = nlp(['Managing and working to mitigate the impact our operations have on the environment is a core element of our business.',
'Rhonda has been volunteering for several years for a variety of charitable community programs.',
'Cabot\'s annual statements are audited annually by an independent registered public accounting firm.',
'As of December 31, 2012, the 2011 Term Loan had a principal balance of $492.5 million.'])
results
"""#FINBERT Classification"""
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-fls',num_labels=3)
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-fls')
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
results = nlp(['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.',
'on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.',
'we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in'])
results
X = df['Review Text'].to_list()
y = df['sentiment'].to_list()
from transformers import BertTokenizer, BertForSequenceClassification
finbert_whole = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3)
tokenizer_whole = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')
labels = {0:'neutral', 1:'positive',2:'negative'}
sent_val = list()
for x in X:
inputs = tokenizer_whole(x, return_tensors="pt", padding=True)
outputs = finbert_whole(**inputs)[0]
val = labels[np.argmax(outputs.detach().numpy())]
print(x, '---->', val)
print('#######################################################')
sent_val.append(val)
from sklearn.metrics import accuracy_score
print(accuracy_score(y, sent_val))
"""#Using DISTILBERT"""
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
tokenizer_distilbert = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
model_distilbert = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
labels = {0:'neutral', 1:'positive',2:'negative'}
sent_val_bert = list()
for x in X:
inputs = tokenizer_distilbert(x, return_tensors="pt", padding=True)
outputs = model_distilbert(**inputs)[0]
val = labels[np.argmax(outputs.detach().numpy())]
print(x, '---->', val)
print('#######################################################')
sent_val_bert.append(val)
from sklearn.metrics import accuracy_score
print(accuracy_score(y, sent_val))
"""#Bert"""
tokenizer_bert = DistilBertTokenizer.from_pretrained("bert-base-uncased")
model_bert = DistilBertForSequenceClassification.from_pretrained("bert-base-uncased")
labels = {0:'neutral', 1:'positive',2:'negative'}
sent_val_bert1 = list()
for x in X:
inputs = tokenizer_bert(x, return_tensors="pt", padding=True)
outputs = model_bert(**inputs)[0]
val = labels[np.argmax(outputs.detach().numpy())]
print(x, '---->', val)
print('#######################################################')
sent_val_bert1.append(val)
from sklearn.metrics import accuracy_score
print(accuracy_score(y, sent_val)) |