Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,825 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Survey_Analysis_v_3_2_86.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1VOlSQ6kva-BiGfJc7b3BwlKBegP13tdS
|
8 |
+
"""
|
9 |
+
|
10 |
+
#1 - https://www.kaggle.com/code/ramjasmaurya/financial-sentiment-analysis
|
11 |
+
#2 - https://www.kaggle.com/code/adarshbiradar/sentiment-analysis-using-bert
|
12 |
+
|
13 |
+
!pip install streamlit
|
14 |
+
import streamlit
|
15 |
+
|
16 |
+
pip install pygal
|
17 |
+
|
18 |
+
!pip install squarify
|
19 |
+
|
20 |
+
# Commented out IPython magic to ensure Python compatibility.
|
21 |
+
import numpy as np
|
22 |
+
import pandas as pd
|
23 |
+
import seaborn as sns
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
import plotly.express as px
|
26 |
+
import plotly.graph_objects as go
|
27 |
+
|
28 |
+
|
29 |
+
import pygal as py
|
30 |
+
import squarify as sq
|
31 |
+
import matplotlib
|
32 |
+
plt.rcParams["figure.figsize"] = (20,15)
|
33 |
+
matplotlib.rc('xtick', labelsize=7)
|
34 |
+
matplotlib.rc('ytick', labelsize=7)
|
35 |
+
|
36 |
+
font = {'family' : 'normal',
|
37 |
+
'weight' : 'bold',
|
38 |
+
'size' : 5}
|
39 |
+
|
40 |
+
matplotlib.rc('font', **font)
|
41 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
42 |
+
import warnings
|
43 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
44 |
+
# %matplotlib inline
|
45 |
+
|
46 |
+
df=pd.read_csv("/content/gen-data.csv",engine="python",encoding="ISO-8859-1")
|
47 |
+
df
|
48 |
+
|
49 |
+
col1=df.keys()[0]
|
50 |
+
col2=df.keys()[1]
|
51 |
+
col2
|
52 |
+
|
53 |
+
df2=pd.DataFrame([[col1, col2]], columns=list([col1,col2]), index=[4845])
|
54 |
+
|
55 |
+
df=df.append(df2, ignore_index=True).set_axis(['sentiment', 'news'], axis=1, inplace=False)
|
56 |
+
|
57 |
+
df
|
58 |
+
|
59 |
+
df = df.replace("neutral","neutral")
|
60 |
+
|
61 |
+
sns.countplot(y="sentiment",data=df)
|
62 |
+
|
63 |
+
df.isnull().sum()
|
64 |
+
|
65 |
+
from textblob import TextBlob
|
66 |
+
|
67 |
+
def preprocess(ReviewText):
|
68 |
+
ReviewText = ReviewText.str.replace("(<br/>)", "")
|
69 |
+
ReviewText = ReviewText.str.replace('(<a).*(>).*(</a>)', '')
|
70 |
+
ReviewText = ReviewText.str.replace('(&)', '')
|
71 |
+
ReviewText = ReviewText.str.replace('(>)', '')
|
72 |
+
ReviewText = ReviewText.str.replace('(<)', '')
|
73 |
+
ReviewText = ReviewText.str.replace('(\xa0)', ' ')
|
74 |
+
return ReviewText
|
75 |
+
df['Review Text'] = preprocess(df['news'])
|
76 |
+
|
77 |
+
df['polarity'] = df['news'].map(lambda text: TextBlob(text).sentiment.polarity)
|
78 |
+
df['news_len'] = df['news'].astype(str).apply(len)
|
79 |
+
df['word_count'] = df['news'].apply(lambda x: len(str(x).split()))
|
80 |
+
|
81 |
+
df
|
82 |
+
|
83 |
+
print('top 4 random reviews with the highest positive sentiment polarity: \n')
|
84 |
+
|
85 |
+
df1=df.drop_duplicates(subset=['Review Text'])
|
86 |
+
|
87 |
+
cl = df1.loc[df1.polarity == 1, ['Review Text']].sample(4).values
|
88 |
+
for c in cl:
|
89 |
+
print(c[0])
|
90 |
+
|
91 |
+
print('5 random reviews with the most neutral sentiment(zero) polarity: \n')
|
92 |
+
cl1 = df.loc[df.polarity == 0, ['Review Text']].sample(5).values
|
93 |
+
for c in cl1:
|
94 |
+
print(c[0])
|
95 |
+
|
96 |
+
print('5 reviews with the most negative polarity having polarity lesser than -0.80: \n')
|
97 |
+
cl3 = df.loc[df.polarity <= -0.80, ['Review Text']].sample(5).values
|
98 |
+
for c in cl3:
|
99 |
+
print(c[0])
|
100 |
+
|
101 |
+
sns.boxplot(df["polarity"],palette="rainbow",data=df)
|
102 |
+
|
103 |
+
df['polarity'].plot(
|
104 |
+
kind='hist',
|
105 |
+
bins=50,
|
106 |
+
color="peru",
|
107 |
+
title='Sentiment Polarity Distribution');plt.show()
|
108 |
+
|
109 |
+
p_s=df[df["polarity"]>0].count()["sentiment"]
|
110 |
+
neu_s=df[df["polarity"]==0].count()["sentiment"]
|
111 |
+
neg_s=df[df["polarity"]<0].count()["sentiment"]
|
112 |
+
|
113 |
+
# Setting labels for items in Chart
|
114 |
+
sentiment = ['positive_sentiment',"neutral_sentiment","negative_sentiment"]
|
115 |
+
|
116 |
+
# Setting size in Chart based on
|
117 |
+
# given values
|
118 |
+
values = [p_s,neu_s,neg_s]
|
119 |
+
|
120 |
+
# colors
|
121 |
+
colors = ['#FF0000', 'olive', '#FFFF00']
|
122 |
+
# explosion
|
123 |
+
explode = (0.05, 0.05, 0.05)
|
124 |
+
|
125 |
+
# Pie Chart
|
126 |
+
plt.pie(values, colors=colors, labels=sentiment,
|
127 |
+
autopct='%1.1f%%', pctdistance=0.85,
|
128 |
+
explode=explode)
|
129 |
+
|
130 |
+
# draw circle
|
131 |
+
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
|
132 |
+
fig = plt.gcf()
|
133 |
+
|
134 |
+
# Adding Circle in Pie chart
|
135 |
+
fig.gca().add_artist(centre_circle)
|
136 |
+
|
137 |
+
# Adding Title of chart
|
138 |
+
plt.title('count of polarity as per sentiment')
|
139 |
+
|
140 |
+
# Displaing Chart
|
141 |
+
plt.show()
|
142 |
+
|
143 |
+
df.plot.box(y=["word_count"],color="hotpink")
|
144 |
+
|
145 |
+
df['word_count'].plot(
|
146 |
+
kind='hist',
|
147 |
+
bins=100,
|
148 |
+
color="orange",
|
149 |
+
title='Review Text Word Count Distribution');plt.show()
|
150 |
+
|
151 |
+
sns.boxenplot(x="news_len",data=df)
|
152 |
+
plt.show()
|
153 |
+
|
154 |
+
df['news_len'].plot(
|
155 |
+
kind='hist',
|
156 |
+
bins=50,
|
157 |
+
color="lightblue",
|
158 |
+
title='Review Text Word Count Distribution');plt.show()
|
159 |
+
|
160 |
+
fig = px.scatter(df, x="news_len", y="word_count", color="sentiment",
|
161 |
+
marginal_x="box", marginal_y="violin",
|
162 |
+
title="Click on the legend items!")
|
163 |
+
fig.show()
|
164 |
+
|
165 |
+
def get_top_n_words(corpus, n=None):
|
166 |
+
vec = CountVectorizer().fit(corpus)
|
167 |
+
bag_of_words = vec.transform(corpus)
|
168 |
+
sum_words = bag_of_words.sum(axis=0)
|
169 |
+
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
|
170 |
+
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
|
171 |
+
return words_freq[:n]
|
172 |
+
common_words = get_top_n_words(df['Review Text'], 20)
|
173 |
+
for word, freq in common_words:
|
174 |
+
print(word, freq)
|
175 |
+
df1 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
|
176 |
+
df1.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
|
177 |
+
kind='bar',title='Top 20 words in review before removing stop words')
|
178 |
+
df1
|
179 |
+
|
180 |
+
def get_top_n_words(corpus, n=None):
|
181 |
+
vec = CountVectorizer(stop_words = 'english').fit(corpus)
|
182 |
+
bag_of_words = vec.transform(corpus)
|
183 |
+
sum_words = bag_of_words.sum(axis=0)
|
184 |
+
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
|
185 |
+
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
|
186 |
+
return words_freq[:n]
|
187 |
+
common_words = get_top_n_words(df['Review Text'], 20)
|
188 |
+
for word, freq in common_words:
|
189 |
+
print(word, freq)
|
190 |
+
df2 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
|
191 |
+
df2.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(kind='bar', title='Top 20 words in review after removing stop words')
|
192 |
+
|
193 |
+
def get_top_n_bigram(corpus, n=None):
|
194 |
+
vec = CountVectorizer(ngram_range=(2, 2)).fit(corpus)
|
195 |
+
bag_of_words = vec.transform(corpus)
|
196 |
+
sum_words = bag_of_words.sum(axis=0)
|
197 |
+
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
|
198 |
+
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
|
199 |
+
return words_freq[:n]
|
200 |
+
common_words = get_top_n_bigram(df['Review Text'], 20)
|
201 |
+
for word, freq in common_words:
|
202 |
+
print(word, freq)
|
203 |
+
df3 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
|
204 |
+
df3.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
|
205 |
+
kind='bar',title='Top 20 bigrams in review before removing stop words')
|
206 |
+
|
207 |
+
def get_top_n_bigram(corpus, n=None):
|
208 |
+
vec = CountVectorizer(ngram_range=(2, 2), stop_words='english').fit(corpus)
|
209 |
+
bag_of_words = vec.transform(corpus)
|
210 |
+
sum_words = bag_of_words.sum(axis=0)
|
211 |
+
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
|
212 |
+
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
|
213 |
+
return words_freq[:n]
|
214 |
+
common_words = get_top_n_bigram(df['Review Text'], 20)
|
215 |
+
for word, freq in common_words:
|
216 |
+
print(word, freq)
|
217 |
+
df4 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
|
218 |
+
df4.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
|
219 |
+
kind='bar', title='Top 20 bigrams in review after removing stop words')
|
220 |
+
|
221 |
+
def get_top_n_trigram(corpus, n=None):
|
222 |
+
vec = CountVectorizer(ngram_range=(3, 3)).fit(corpus)
|
223 |
+
bag_of_words = vec.transform(corpus)
|
224 |
+
sum_words = bag_of_words.sum(axis=0)
|
225 |
+
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
|
226 |
+
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
|
227 |
+
return words_freq[:n]
|
228 |
+
common_words = get_top_n_trigram(df['Review Text'], 20)
|
229 |
+
for word, freq in common_words:
|
230 |
+
print(word, freq)
|
231 |
+
df5 = pd.DataFrame(common_words, columns = ['ReviewText' , 'count'])
|
232 |
+
df5.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
|
233 |
+
kind='bar', title='Top 20 trigrams in review before removing stop words')
|
234 |
+
|
235 |
+
def get_top_n_trigram(corpus, n=None):
|
236 |
+
vec = CountVectorizer(ngram_range=(3, 3), stop_words='english').fit(corpus)
|
237 |
+
bag_of_words = vec.transform(corpus)
|
238 |
+
sum_words = bag_of_words.sum(axis=0)
|
239 |
+
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
|
240 |
+
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
|
241 |
+
return words_freq[:n]
|
242 |
+
common_words = get_top_n_trigram(df['Review Text'], 20)
|
243 |
+
for word, freq in common_words:
|
244 |
+
print(word, freq)
|
245 |
+
df6 = pd.DataFrame(common_words, columns = ['ReviewText' ,'count'])
|
246 |
+
df6.groupby('ReviewText').sum()['count'].sort_values(ascending=False).plot(
|
247 |
+
kind='bar', title='Top 20 trigrams in review after removing stop words')
|
248 |
+
|
249 |
+
import nltk
|
250 |
+
nltk.download('punkt')
|
251 |
+
nltk.download('wordnet')
|
252 |
+
nltk.download('omw-1.4')
|
253 |
+
nltk.download('averaged_perceptron_tagger')
|
254 |
+
|
255 |
+
#import nltk
|
256 |
+
blob = TextBlob(str(df['Review Text']))
|
257 |
+
pos_df = pd.DataFrame(blob.tags, columns = ['word' , 'pos'])
|
258 |
+
pos_df = pos_df.pos.value_counts()[:20]
|
259 |
+
pos_df.plot(
|
260 |
+
kind='bar',
|
261 |
+
title='Top 20 Part-of-speech tagging for review corpus')
|
262 |
+
|
263 |
+
y0 = df.loc[df['sentiment'] == 'positive']['polarity']
|
264 |
+
y1 = df.loc[df['sentiment'] == 'negative']['polarity']
|
265 |
+
y2 = df.loc[df['sentiment'] == 'neutral']['polarity']
|
266 |
+
|
267 |
+
trace0 = go.Box(
|
268 |
+
y=y0,
|
269 |
+
name = 'positive',
|
270 |
+
marker = dict(
|
271 |
+
color = 'rgb(214, 12, 140)',
|
272 |
+
)
|
273 |
+
)
|
274 |
+
trace1 = go.Box(
|
275 |
+
y=y1,
|
276 |
+
name = 'negative',
|
277 |
+
marker = dict(
|
278 |
+
color = 'rgb(0, 128, 128)',
|
279 |
+
)
|
280 |
+
)
|
281 |
+
trace2 = go.Box(
|
282 |
+
y=y2,
|
283 |
+
name = 'neutral',
|
284 |
+
marker = dict(
|
285 |
+
color = 'rgb(10, 140, 208)',
|
286 |
+
)
|
287 |
+
)
|
288 |
+
data = [trace0, trace1, trace2]
|
289 |
+
layout = go.Layout(
|
290 |
+
title = "Polarity Boxplot according to sentiment"
|
291 |
+
)
|
292 |
+
|
293 |
+
go.Figure(data=data,layout=layout)
|
294 |
+
|
295 |
+
y0 = df.loc[df['sentiment'] == 'positive']['news_len']
|
296 |
+
y1 = df.loc[df['sentiment'] == 'negative']['news_len']
|
297 |
+
y2 = df.loc[df['sentiment'] == 'neutral']['news_len']
|
298 |
+
|
299 |
+
|
300 |
+
trace0 = go.Box(
|
301 |
+
y=y0,
|
302 |
+
name = 'positive',
|
303 |
+
marker = dict(
|
304 |
+
color = 'rgb(214, 12, 140)',
|
305 |
+
)
|
306 |
+
)
|
307 |
+
trace1 = go.Box(
|
308 |
+
y=y1,
|
309 |
+
name = 'negative',
|
310 |
+
marker = dict(
|
311 |
+
color = 'rgb(0, 128, 128)',
|
312 |
+
)
|
313 |
+
)
|
314 |
+
trace2 = go.Box(
|
315 |
+
y=y2,
|
316 |
+
name = 'neutral',
|
317 |
+
marker = dict(
|
318 |
+
color = 'rgb(10, 140, 208)',
|
319 |
+
)
|
320 |
+
)
|
321 |
+
data = [trace0, trace1, trace2]
|
322 |
+
layout = go.Layout(
|
323 |
+
title = "news length Boxplot by sentiment"
|
324 |
+
)
|
325 |
+
go.Figure(data=data,layout=layout)
|
326 |
+
|
327 |
+
xp = df.loc[df['sentiment'] == "positive", 'polarity']
|
328 |
+
xneu = df.loc[df['sentiment'] == "neutral", 'polarity']
|
329 |
+
xneg= df.loc[df['sentiment'] == "negative", 'polarity']
|
330 |
+
|
331 |
+
trace1 = go.Histogram(
|
332 |
+
x=xp, name='positive',
|
333 |
+
opacity=0.75
|
334 |
+
)
|
335 |
+
trace2 = go.Histogram(
|
336 |
+
x=xneu, name = 'neutral',
|
337 |
+
opacity=0.75
|
338 |
+
)
|
339 |
+
trace3 = go.Histogram(
|
340 |
+
x=xneg, name = 'negative',
|
341 |
+
opacity=0.75
|
342 |
+
)
|
343 |
+
data = [trace1, trace2,trace3]
|
344 |
+
layout = go.Layout(barmode='overlay', title='Distribution of Sentiment polarity')
|
345 |
+
go.Figure(data=data, layout=layout)
|
346 |
+
|
347 |
+
trace1 = go.Scatter(
|
348 |
+
x=df['polarity'], y=df['news_len'], mode='markers', name='points',
|
349 |
+
marker=dict(color='rgb(102,0,0)', size=2, opacity=0.4)
|
350 |
+
)
|
351 |
+
trace2 = go.Histogram2dContour(
|
352 |
+
x=df['polarity'], y=df['news_len'], name='density', ncontours=50,
|
353 |
+
colorscale='Hot', reversescale=True, showscale=False
|
354 |
+
)
|
355 |
+
trace3 = go.Histogram(
|
356 |
+
x=df['polarity'], name='Sentiment polarity density',
|
357 |
+
marker=dict(color='rgb(102,0,0)'),
|
358 |
+
yaxis='y2'
|
359 |
+
)
|
360 |
+
trace4 = go.Histogram(
|
361 |
+
y=df['news_len'], name='news length density', marker=dict(color='rgb(102,0,0)'),
|
362 |
+
xaxis='x2'
|
363 |
+
)
|
364 |
+
data = [trace1, trace2, trace3, trace4]
|
365 |
+
|
366 |
+
layout = go.Layout(
|
367 |
+
showlegend=False,
|
368 |
+
autosize=False,
|
369 |
+
width=600,
|
370 |
+
height=550,
|
371 |
+
xaxis=dict(
|
372 |
+
domain=[0, 0.85],
|
373 |
+
showgrid=False,
|
374 |
+
zeroline=False
|
375 |
+
),
|
376 |
+
yaxis=dict(
|
377 |
+
domain=[0, 0.85],
|
378 |
+
showgrid=False,
|
379 |
+
zeroline=False
|
380 |
+
),
|
381 |
+
margin=dict(
|
382 |
+
t=50
|
383 |
+
),
|
384 |
+
hovermode='x unified',
|
385 |
+
bargap=0,
|
386 |
+
xaxis2=dict(
|
387 |
+
domain=[0.85, 1],
|
388 |
+
showgrid=False,
|
389 |
+
zeroline=False
|
390 |
+
),
|
391 |
+
yaxis2=dict(
|
392 |
+
domain=[0.85, 1],
|
393 |
+
showgrid=False,
|
394 |
+
zeroline=False
|
395 |
+
)
|
396 |
+
)
|
397 |
+
|
398 |
+
go.Figure(data=data, layout=layout)
|
399 |
+
|
400 |
+
trace1 = go.Scatter(
|
401 |
+
x=df['polarity'], y=df['word_count'], mode='markers', name='points',
|
402 |
+
marker=dict(color='rgb(102,0,0)', size=2, opacity=0.4)
|
403 |
+
)
|
404 |
+
trace2 = go.Histogram2dContour(
|
405 |
+
x=df['polarity'], y=df['word_count'], name='density', ncontours=20,
|
406 |
+
colorscale='Hot', reversescale=True, showscale=False
|
407 |
+
)
|
408 |
+
trace3 = go.Histogram(
|
409 |
+
x=df['polarity'], name='Sentiment polarity density',
|
410 |
+
marker=dict(color='rgb(102,0,0)'),
|
411 |
+
yaxis='y2'
|
412 |
+
)
|
413 |
+
trace4 = go.Histogram(
|
414 |
+
y=df['word_count'], name='word count density', marker=dict(color='rgb(112,0,0)'),
|
415 |
+
xaxis='x2'
|
416 |
+
)
|
417 |
+
data = [trace1, trace2, trace3, trace4]
|
418 |
+
|
419 |
+
layout = go.Layout(
|
420 |
+
showlegend=False,
|
421 |
+
autosize=False,
|
422 |
+
width=600,
|
423 |
+
height=550,
|
424 |
+
xaxis=dict(
|
425 |
+
domain=[0, 0.85],
|
426 |
+
showgrid=False,
|
427 |
+
zeroline=False
|
428 |
+
),
|
429 |
+
yaxis=dict(
|
430 |
+
domain=[0, 0.85],
|
431 |
+
showgrid=False,
|
432 |
+
zeroline=False
|
433 |
+
),
|
434 |
+
margin=dict(
|
435 |
+
t=50
|
436 |
+
),
|
437 |
+
hovermode='closest',
|
438 |
+
bargap=0,
|
439 |
+
xaxis2=dict(
|
440 |
+
domain=[0.85, 1],
|
441 |
+
showgrid=False,
|
442 |
+
zeroline=False
|
443 |
+
),
|
444 |
+
yaxis2=dict(
|
445 |
+
domain=[0.85, 1],
|
446 |
+
showgrid=False,
|
447 |
+
zeroline=False
|
448 |
+
)
|
449 |
+
)
|
450 |
+
|
451 |
+
go.Figure(data=data, layout=layout)
|
452 |
+
|
453 |
+
pip install scattertext
|
454 |
+
|
455 |
+
pip install spacy
|
456 |
+
|
457 |
+
import scattertext as st
|
458 |
+
import spacy
|
459 |
+
nlp = spacy.blank("en")
|
460 |
+
nlp.add_pipe('sentencizer')
|
461 |
+
#nlp.add_pipe(nlp.create_pipe('sentencizer'))
|
462 |
+
corpus = st.CorpusFromPandas(df, category_col='sentiment', text_col='Review Text', nlp=nlp).build()
|
463 |
+
print(list(corpus.get_scaled_f_scores_vs_background().index[:20]))
|
464 |
+
|
465 |
+
term_freq_df = corpus.get_term_freq_df()
|
466 |
+
term_freq_df['positive_sentiment'] = corpus.get_scaled_f_scores('positive')
|
467 |
+
list(term_freq_df.sort_values(by='positive_sentiment', ascending=False).index[:20])
|
468 |
+
|
469 |
+
term_freq_df['neutral_sentiment'] = corpus.get_scaled_f_scores('neutral')
|
470 |
+
list(term_freq_df.sort_values(by='neutral_sentiment', ascending=False).index[:20])
|
471 |
+
|
472 |
+
term_freq_df['negative_sentiment'] = corpus.get_scaled_f_scores('negative')
|
473 |
+
list(term_freq_df.sort_values(by='negative_sentiment', ascending=False).index[:20])
|
474 |
+
|
475 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
476 |
+
from sklearn.decomposition import TruncatedSVD
|
477 |
+
from collections import Counter
|
478 |
+
|
479 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english', use_idf=True, smooth_idf=True)
|
480 |
+
reindexed_data = df['Review Text'].values
|
481 |
+
document_term_matrix = tfidf_vectorizer.fit_transform(reindexed_data)
|
482 |
+
n_topics = 10
|
483 |
+
lsa_model = TruncatedSVD(n_components=n_topics)
|
484 |
+
lsa_topic_matrix = lsa_model.fit_transform(document_term_matrix)
|
485 |
+
|
486 |
+
def get_keys(topic_matrix):
|
487 |
+
'''
|
488 |
+
returns an integer list of predicted topic
|
489 |
+
categories for a given topic matrix
|
490 |
+
'''
|
491 |
+
keys = topic_matrix.argmax(axis=1).tolist()
|
492 |
+
return keys
|
493 |
+
|
494 |
+
def keys_to_counts(keys):
|
495 |
+
'''
|
496 |
+
returns a tuple of topic categories and their
|
497 |
+
accompanying magnitudes for a given list of keys
|
498 |
+
'''
|
499 |
+
count_pairs = Counter(keys).items()
|
500 |
+
categories = [pair[0] for pair in count_pairs]
|
501 |
+
counts = [pair[1] for pair in count_pairs]
|
502 |
+
return (categories, counts)
|
503 |
+
|
504 |
+
lsa_keys = get_keys(lsa_topic_matrix)
|
505 |
+
lsa_categories, lsa_counts = keys_to_counts(lsa_keys)
|
506 |
+
|
507 |
+
def get_top_n_words(n, keys, document_term_matrix, tfidf_vectorizer):
|
508 |
+
'''
|
509 |
+
returns a list of n_topic strings, where each string contains the n most common
|
510 |
+
words in a predicted category, in order
|
511 |
+
'''
|
512 |
+
top_word_indices = []
|
513 |
+
for topic in range(n_topics):
|
514 |
+
temp_vector_sum = 0
|
515 |
+
for i in range(len(keys)):
|
516 |
+
if keys[i] == topic:
|
517 |
+
temp_vector_sum += document_term_matrix[i]
|
518 |
+
temp_vector_sum = temp_vector_sum.toarray()
|
519 |
+
top_n_word_indices = np.flip(np.argsort(temp_vector_sum)[0][-n:],0)
|
520 |
+
top_word_indices.append(top_n_word_indices)
|
521 |
+
top_words = []
|
522 |
+
for topic in top_word_indices:
|
523 |
+
topic_words = []
|
524 |
+
for index in topic:
|
525 |
+
temp_word_vector = np.zeros((1,document_term_matrix.shape[1]))
|
526 |
+
temp_word_vector[:,index] = 1
|
527 |
+
the_word = tfidf_vectorizer.inverse_transform(temp_word_vector)[0][0]
|
528 |
+
topic_words.append(the_word.encode('ascii').decode('utf-8'))
|
529 |
+
top_words.append(" ".join(topic_words))
|
530 |
+
return top_words
|
531 |
+
|
532 |
+
top_lsa=get_top_n_words(3, lsa_keys, document_term_matrix, tfidf_vectorizer)
|
533 |
+
|
534 |
+
for i in range(len(top_lsa)):
|
535 |
+
print("Topic {}: ".format(i+1), top_lsa[i])
|
536 |
+
|
537 |
+
top_3_words = get_top_n_words(3, lsa_keys, document_term_matrix, tfidf_vectorizer)
|
538 |
+
labels = ['Topic {}: \n'.format(i+1) + top_3_words[i] for i in lsa_categories]
|
539 |
+
fig, ax = plt.subplots(figsize=(16,8))
|
540 |
+
ax.bar(lsa_categories, lsa_counts,color="skyblue");
|
541 |
+
ax.set_xticks(lsa_categories,);
|
542 |
+
ax.set_xticklabels(labels, rotation=45, rotation_mode='default',color="olive");
|
543 |
+
ax.set_ylabel('Number of review text on topics');
|
544 |
+
ax.set_title('Count of LSA topics');
|
545 |
+
plt.show();
|
546 |
+
|
547 |
+
"""#---2----"""
|
548 |
+
|
549 |
+
df['sentiment'].value_counts()
|
550 |
+
|
551 |
+
from sklearn.model_selection import train_test_split
|
552 |
+
train,eva = train_test_split(df,test_size = 0.2)
|
553 |
+
|
554 |
+
!pip install simpletransformers
|
555 |
+
|
556 |
+
from simpletransformers.classification import ClassificationModel
|
557 |
+
|
558 |
+
# Create a Transformer Model BERT
|
559 |
+
model = ClassificationModel('bert', 'bert-base-cased', num_labels=3, args={'reprocess_input_data': True, 'overwrite_output_dir': True},use_cuda=False)
|
560 |
+
|
561 |
+
# 0,1,2 : positive,negative
|
562 |
+
def making_label(st):
|
563 |
+
if(st=='positive'):
|
564 |
+
return 0
|
565 |
+
elif(st=='neutral'):
|
566 |
+
return 2
|
567 |
+
else:
|
568 |
+
return 1
|
569 |
+
|
570 |
+
train['label'] = train['sentiment'].apply(making_label)
|
571 |
+
eva['label'] = eva['sentiment'].apply(making_label)
|
572 |
+
print(train.shape)
|
573 |
+
|
574 |
+
train_df = pd.DataFrame({
|
575 |
+
'text': train['news'][:1500].replace(r'\n', ' ', regex=True),
|
576 |
+
'label': train['label'][:1500]
|
577 |
+
})
|
578 |
+
|
579 |
+
eval_df = pd.DataFrame({
|
580 |
+
'text': eva['news'][-400:].replace(r'\n', ' ', regex=True),
|
581 |
+
'label': eva['label'][-400:]
|
582 |
+
})
|
583 |
+
|
584 |
+
model.train_model(train_df)
|
585 |
+
|
586 |
+
result, model_outputs, wrong_predictions = model.eval_model(eval_df)
|
587 |
+
|
588 |
+
result
|
589 |
+
|
590 |
+
model_outputs
|
591 |
+
|
592 |
+
len(wrong_predictions)
|
593 |
+
|
594 |
+
lst = []
|
595 |
+
for arr in model_outputs:
|
596 |
+
lst.append(np.argmax(arr))
|
597 |
+
|
598 |
+
true = eval_df['label'].tolist()
|
599 |
+
predicted = lst
|
600 |
+
|
601 |
+
import sklearn
|
602 |
+
mat = sklearn.metrics.confusion_matrix(true , predicted)
|
603 |
+
mat
|
604 |
+
|
605 |
+
df_cm = pd.DataFrame(mat, range(3), range(3))
|
606 |
+
|
607 |
+
sns.heatmap(df_cm, annot=True)
|
608 |
+
plt.show()
|
609 |
+
|
610 |
+
print(sklearn.metrics.classification_report(true,predicted,target_names=['positive','neutral','negative']))
|
611 |
+
|
612 |
+
sklearn.metrics.accuracy_score(true,predicted)
|
613 |
+
|
614 |
+
#Give your statement
|
615 |
+
def get_result(statement):
|
616 |
+
result = model.predict([statement])
|
617 |
+
pos = np.where(result[1][0] == np.amax(result[1][0]))
|
618 |
+
pos = int(pos[0])
|
619 |
+
sentiment_dict = {0:'positive',1:'negative',2:'neutral'}
|
620 |
+
print(sentiment_dict[pos])
|
621 |
+
return
|
622 |
+
|
623 |
+
## neutral statement
|
624 |
+
get_result("According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing .")
|
625 |
+
|
626 |
+
## positive statement
|
627 |
+
get_result("According to the company 's updated strategy for the years 2009-2012 , Basware targets a long-term net sales growth in the range of 20 % -40 % with an operating profit margin of 10 % -20 % of net sales .")
|
628 |
+
|
629 |
+
## negative statement
|
630 |
+
get_result('Sales in Finland decreased by 2.0 % , and international sales decreased by 9.3 % in terms of euros , and by 15.1 % in terms of local currencies .')
|
631 |
+
|
632 |
+
get_result("This company is growing like anything with 23% profit every year")
|
633 |
+
|
634 |
+
get_result("This company is not able to make any profit but make very less profit in last quarter")
|
635 |
+
|
636 |
+
get_result("The doctor treated well and the patient was very healthy")
|
637 |
+
|
638 |
+
get_result("the act of politicians is to serve and help needy and not to create ruck suck")
|
639 |
+
|
640 |
+
get_result("American burger is too good. Can't resisit to go and have one")
|
641 |
+
|
642 |
+
get_result("GDP per capita increased to double in India from 2013")
|
643 |
+
|
644 |
+
get_result("Indian economy is doing very good and will become super power one day.")
|
645 |
+
|
646 |
+
get_result("Indian economy is doing very good and will create millions of jobs in coming years")
|
647 |
+
|
648 |
+
get_result("Indian economy is not doing very good and need urgent reforms but we are pretty sure it will be very good in coming years")
|
649 |
+
|
650 |
+
get_result("Indian economy is doing very good.Indian economy is not doing very good ")
|
651 |
+
|
652 |
+
get_result("Indian economy is not doing very good. Indian economy will bounce back to become leading economy")
|
653 |
+
|
654 |
+
get_result("Indian economy is not doing very good. Urgent reforms is required to create new jobs and improve export")
|
655 |
+
|
656 |
+
get_result("The stock market of Indian economy is dangling too much")
|
657 |
+
|
658 |
+
"""#VADER"""
|
659 |
+
|
660 |
+
!pip install vaderSentiment
|
661 |
+
|
662 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
663 |
+
|
664 |
+
obj = SentimentIntensityAnalyzer()
|
665 |
+
|
666 |
+
sentence = "Ram is really good "
|
667 |
+
sentiment_dict = obj.polarity_scores(sentence)
|
668 |
+
print(sentiment_dict)
|
669 |
+
|
670 |
+
#check this
|
671 |
+
sentence = "Ram is better "
|
672 |
+
sentiment_dict = obj.polarity_scores(sentence)
|
673 |
+
print(sentiment_dict)
|
674 |
+
|
675 |
+
sentence = "Rahul is really bad"
|
676 |
+
sentiment_dict = obj.polarity_scores(sentence)
|
677 |
+
print(sentiment_dict)
|
678 |
+
|
679 |
+
#punctuation
|
680 |
+
print(obj.polarity_scores('Ram is good boy'))
|
681 |
+
print(obj.polarity_scores('Ram is good boy!'))
|
682 |
+
print(obj.polarity_scores('Ram is good boy!!'))
|
683 |
+
|
684 |
+
#capitalization
|
685 |
+
print(obj.polarity_scores('Ram is good'))
|
686 |
+
print(obj.polarity_scores('Ram is GOOD'))
|
687 |
+
|
688 |
+
#degree
|
689 |
+
print(obj.polarity_scores('Ram is good'))
|
690 |
+
print(obj.polarity_scores('Ram is better'))
|
691 |
+
print(obj.polarity_scores('Ram is best'))
|
692 |
+
|
693 |
+
print(obj.polarity_scores('Ram is bad'))
|
694 |
+
print(obj.polarity_scores('Ram is worse'))
|
695 |
+
print(obj.polarity_scores('Ram is worst'))
|
696 |
+
|
697 |
+
#conjuction
|
698 |
+
print(obj.polarity_scores('Ram is good'))
|
699 |
+
print(obj.polarity_scores('Ram is good, but he is also naughty sometimes'))
|
700 |
+
|
701 |
+
#slang
|
702 |
+
print(obj.polarity_scores("That Hotel"))
|
703 |
+
print(obj.polarity_scores("That Hotel SUX"))
|
704 |
+
print(obj.polarity_scores("That Hotel SUCKS"))
|
705 |
+
|
706 |
+
#emoticons
|
707 |
+
print(obj.polarity_scores("Your :) is the most beautiful thing I have ever seen"))
|
708 |
+
print(obj.polarity_scores("Your smile is the most beautiful thing I have ever seen"))
|
709 |
+
|
710 |
+
print(obj.polarity_scores("Your :( is the worst thing I have ever seen"))
|
711 |
+
print(obj.polarity_scores("Your smile is the worst thing I have ever seen"))
|
712 |
+
|
713 |
+
#https://360digitmg.com/blog/bert-variants-and-their-differences
|
714 |
+
#https://simpletransformers.ai/docs/classification-specifics/#supported-model-types Official reference
|
715 |
+
|
716 |
+
"""#3.a Using FINBERT Model"""
|
717 |
+
|
718 |
+
#PPT
|
719 |
+
#https://medium.com/@benjamin_joesy/finbert-financial-sentiment-analysis-with-bert-acf695b64ac6
|
720 |
+
|
721 |
+
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
722 |
+
|
723 |
+
# tested in transformers==4.18.0
|
724 |
+
import transformers
|
725 |
+
transformers.__version__
|
726 |
+
|
727 |
+
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3)
|
728 |
+
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')
|
729 |
+
|
730 |
+
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
|
731 |
+
results = nlp(['growth is strong and we have plenty of liquidity.',
|
732 |
+
'there is a shortage of capital, and we need extra financing.',
|
733 |
+
'formulation patents might protect Vasotec to a limited extent.'])
|
734 |
+
|
735 |
+
results
|
736 |
+
|
737 |
+
"""#FINBERT ESG"""
|
738 |
+
|
739 |
+
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-esg',num_labels=4)
|
740 |
+
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-esg')
|
741 |
+
|
742 |
+
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
|
743 |
+
results = nlp(['Managing and working to mitigate the impact our operations have on the environment is a core element of our business.',
|
744 |
+
'Rhonda has been volunteering for several years for a variety of charitable community programs.',
|
745 |
+
'Cabot\'s annual statements are audited annually by an independent registered public accounting firm.',
|
746 |
+
'As of December 31, 2012, the 2011 Term Loan had a principal balance of $492.5 million.'])
|
747 |
+
|
748 |
+
results
|
749 |
+
|
750 |
+
"""#FINBERT Classification"""
|
751 |
+
|
752 |
+
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-fls',num_labels=3)
|
753 |
+
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-fls')
|
754 |
+
|
755 |
+
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
|
756 |
+
results = nlp(['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.',
|
757 |
+
'on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.',
|
758 |
+
'we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in'])
|
759 |
+
|
760 |
+
results
|
761 |
+
|
762 |
+
X = df['Review Text'].to_list()
|
763 |
+
y = df['sentiment'].to_list()
|
764 |
+
|
765 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
766 |
+
|
767 |
+
finbert_whole = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3)
|
768 |
+
tokenizer_whole = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')
|
769 |
+
|
770 |
+
labels = {0:'neutral', 1:'positive',2:'negative'}
|
771 |
+
|
772 |
+
sent_val = list()
|
773 |
+
for x in X:
|
774 |
+
inputs = tokenizer_whole(x, return_tensors="pt", padding=True)
|
775 |
+
outputs = finbert_whole(**inputs)[0]
|
776 |
+
|
777 |
+
val = labels[np.argmax(outputs.detach().numpy())]
|
778 |
+
print(x, '---->', val)
|
779 |
+
print('#######################################################')
|
780 |
+
sent_val.append(val)
|
781 |
+
|
782 |
+
from sklearn.metrics import accuracy_score
|
783 |
+
print(accuracy_score(y, sent_val))
|
784 |
+
|
785 |
+
"""#Using DISTILBERT"""
|
786 |
+
|
787 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
788 |
+
|
789 |
+
tokenizer_distilbert = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
790 |
+
model_distilbert = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
791 |
+
|
792 |
+
labels = {0:'neutral', 1:'positive',2:'negative'}
|
793 |
+
|
794 |
+
sent_val_bert = list()
|
795 |
+
for x in X:
|
796 |
+
inputs = tokenizer_distilbert(x, return_tensors="pt", padding=True)
|
797 |
+
outputs = model_distilbert(**inputs)[0]
|
798 |
+
|
799 |
+
val = labels[np.argmax(outputs.detach().numpy())]
|
800 |
+
print(x, '---->', val)
|
801 |
+
print('#######################################################')
|
802 |
+
sent_val_bert.append(val)
|
803 |
+
|
804 |
+
from sklearn.metrics import accuracy_score
|
805 |
+
print(accuracy_score(y, sent_val))
|
806 |
+
|
807 |
+
"""#Bert"""
|
808 |
+
|
809 |
+
tokenizer_bert = DistilBertTokenizer.from_pretrained("bert-base-uncased")
|
810 |
+
model_bert = DistilBertForSequenceClassification.from_pretrained("bert-base-uncased")
|
811 |
+
|
812 |
+
labels = {0:'neutral', 1:'positive',2:'negative'}
|
813 |
+
|
814 |
+
sent_val_bert1 = list()
|
815 |
+
for x in X:
|
816 |
+
inputs = tokenizer_bert(x, return_tensors="pt", padding=True)
|
817 |
+
outputs = model_bert(**inputs)[0]
|
818 |
+
|
819 |
+
val = labels[np.argmax(outputs.detach().numpy())]
|
820 |
+
print(x, '---->', val)
|
821 |
+
print('#######################################################')
|
822 |
+
sent_val_bert1.append(val)
|
823 |
+
|
824 |
+
from sklearn.metrics import accuracy_score
|
825 |
+
print(accuracy_score(y, sent_val))
|