Prudvireddy's picture
Upload 7 files
daf848e verified
raw
history blame
15.7 kB
from crewai import Task, Agent, Crew, Process
from langchain.tools import tool, Tool
import re
import os
from langchain_groq import ChatGroq
# llm = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048)
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key='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')
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.pydantic_v1 import BaseModel, Field
import requests
# import pyttsx3
import io
import tempfile
from gtts import gTTS
from pydub import AudioSegment
from groq import Groq
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip
from openai import OpenAI
def split_text_into_chunks(text, chunk_size):
words = text.split()
return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
def add_text_to_video(input_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.3,
font_path='Montserrat-Bold.ttf'):
temp_output_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_video = temp_output_file.name
chunks = split_text_into_chunks(text, 3) # Adjust chunk size as needed
cap = cv2.VideoCapture(input_video)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
chunk_duration_frames = duration * fps
delay_frames = int(delay_between_chunks * fps)
font = ImageFont.truetype(font_path, fontsize)
current_frame = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(frame_pil)
chunk_index = current_frame // (chunk_duration_frames + delay_frames)
if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
chunk = chunks[chunk_index]
text_bbox = draw.textbbox((0, 0), chunk, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
text_x = (width - text_width) // 2
text_y = height - 400 # Position text at the bottom
if text_width > width:
words = chunk.split()
half = len(words) // 2
line1 = ' '.join(words[:half])
line2 = ' '.join(words[half:])
text_size_line1 = draw.textsize(line1, font=font)
text_size_line2 = draw.textsize(line2, font=font)
text_x_line1 = (width - text_size_line1[0]) // 2
text_x_line2 = (width - text_size_line2[0]) // 2
text_y = height - 250 - text_size_line1[1] # Adjust vertical position for two lines
for dx in range(-outline_thickness, outline_thickness + 1):
for dy in range(-outline_thickness, outline_thickness + 1):
if dx != 0 or dy != 0:
draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=fontcolor)
else:
for dx in range(-outline_thickness, outline_thickness + 1):
for dy in range(-outline_thickness, outline_thickness + 1):
if dx != 0 or dy != 0:
draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)
frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)
out.write(frame)
current_frame += 1
# Ensure loop breaks after processing all frames
if current_frame >= frame_count:
break
cap.release()
out.release()
cv2.destroyAllWindows()
return output_video
def apply_zoom_in_effect(clip, zoom_factor=1.2):
width, height = clip.size
duration = clip.duration
def zoom_in_effect(get_frame, t):
frame = get_frame(t)
zoom = 1 + (zoom_factor - 1) * (t / duration)
new_width, new_height = int(width * zoom), int(height * zoom)
resized_frame = cv2.resize(frame, (new_width, new_height))
x_start = (new_width - width) // 2
y_start = (new_height - height) // 2
cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
return cropped_frame
return clip.fl(zoom_in_effect, apply_to=['mask'])
@tool
def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
"""Creates video using images and audios.
Args:
images_dir: path to images folder
speeches_dir: path to speeches folder"""
client = Groq(api_key='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')
# images_paths = sorted(os.listdir(images_dir))
# audio_paths = sorted(os.listdir(speeches_dir))
images_paths = sorted([os.path.join(images_dir, img) for img in os.listdir(images_dir) if img.endswith('.png') or img.endswith('.jpg')])
audio_paths = sorted([os.path.join(speeches_dir, speech) for speech in os.listdir(speeches_dir) if speech.endswith('.mp3')])
clips = []
temp_files = []
for i in range(min(len(images_paths), len(audio_paths))):
img_clip = ImageClip(os.path.join(images_dir, images_paths[i]))
audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i]))
videoclip = img_clip.set_duration(audioclip.duration)
zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
with open(os.path.join(speeches_dir, audio_paths[i]), "rb") as file:
transcription = client.audio.transcriptions.create(
file=(audio_paths[i], file.read()),
model="whisper-large-v3",
response_format="verbose_json",
)
caption = transcription.text
temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
temp_files.append(temp_video_path)
final_video_path = add_text_to_video(temp_video_path, caption, duration=1, fontsize=60)
temp_files.append(final_video_path)
final_clip = VideoFileClip(final_video_path)
final_clip = final_clip.set_audio(audioclip)
print(f'create small video {i}')
clips.append(final_clip)
final_clip = concatenate_videoclips(clips)
temp_final_video = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
final_clip.write_videofile(temp_final_video, codec='libx264', fps=24)
# Close all video files properly
for clip in clips:
clip.close()
# Remove all temporary files
for temp_file in temp_files:
try:
os.remove(temp_file)
except Exception as e:
print(f"Error removing file {temp_file}: {e}")
return temp_final_video
from langchain.pydantic_v1 import BaseModel, Field
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
class WikiInputs(BaseModel):
"""Inputs to the wikipedia tool."""
query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")
api_wrapper = WikipediaAPIWrapper(top_k_results=2)#, doc_content_chars_max=100)
wiki_tool = WikipediaQueryRun(
name="wiki-tool",
description="{query:'input here'}",
args_schema=WikiInputs,
api_wrapper=api_wrapper,
return_direct=True,
)
wiki = Tool(
name = 'wikipedia',
func = wiki_tool.run,
description= "{query:'input here'}"
)
def process_script(script):
"""Used to process the script into dictionary format"""
dict = {}
text_for_image_generation = re.findall(r'<image>(.*?)</?image>', script, re.DOTALL)
text_for_speech_generation = re.findall(r'<narration>(.*?)</?narration>', script, re.DOTALL)
dict['text_for_image_generation'] = text_for_image_generation
dict['text_for_speech_generation'] = text_for_speech_generation
return dict
def generate_speech(text, lang='en', speed=1.15, num=0):
"""
Generates speech for the given script using gTTS and adjusts the speed.
"""
temp_speech_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
temp_speech_path = temp_speech_file.name
tts = gTTS(text=text, lang=lang)
tts.save(temp_speech_path)
sound = AudioSegment.from_file(temp_speech_path)
if speed != 1.0:
sound_with_altered_speed = sound._spawn(sound.raw_data, overrides={
"frame_rate": int(sound.frame_rate * speed)
}).set_frame_rate(sound.frame_rate)
sound_with_altered_speed.export(temp_speech_path, format="mp3")
else:
sound.export(temp_speech_path, format="mp3")
temp_speech_file.close()
return temp_speech_path
@tool
def image_generator(script, model):
"""Generates images for the given script.
Saves it to a temporary directory and returns the path.
Args:
script: a complete script containing narrations and image descriptions.
model: image generation model used to generate images, can be 'Stability' or 'Dalle-2'"""
remove_temp_files('/tmp')
images_dir = tempfile.mkdtemp()
dict = process_script(script)
if model == 'Stability':
for i, text in enumerate(dict['text_for_image_generation']):
try:
response = requests.post(
f"https://api.stability.ai/v2beta/stable-image/generate/core",
headers={
"authorization": os.environ.get('STABILITY_AI_API_KEY'),
"accept": "image/*"
},
files={"none": ''},
data={
"prompt": text,
"output_format": "png",
'aspect_ratio': "9:16",
},
)
print(f'image {i} generated')
if response.status_code == 200:
with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
file.write(response.content)
else:
raise Exception(str(response.json()))
except Exception as e:
raise Exception(f"Image generation failed: {e}")
elif model == 'Dalle-2':
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
for i, text in enumerate(dict['text_for_image_generation']):
try:
response = client.images.generate(
model="dall-e-2",
prompt=text,
size="1024x1024",
quality="standard",
n=1
)
image_url = response.data[0].url
print(f'image {i} generated')
# Download the image
image_response = requests.get(image_url)
if image_response.status_code == 200:
with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
file.write(image_response.content)
else:
raise Exception(f"Failed to download image with status code {image_response.status_code} and message: {image_response.text}")
except Exception as e:
raise Exception(f"Image generation failed: {e}")
return f'images are stored in {images_dir} directory'
@tool
def speech_generator(script):
"""
Generates speech files for the given script using gTTS.
Saves them to a temporary directory and returns the path.
Args:
script: a complete script containing narrations and image descriptions.
"""
speeches_dir = tempfile.mkdtemp()
dict = process_script(script)
for i, text in enumerate(dict['text_for_speech_generation']):
speech_path = generate_speech(text, num=i)
print(f'speech {i} generated')
os.rename(speech_path, os.path.join(speeches_dir, f'speech_{i}.mp3'))
return f'images are stored in {speeches_dir} directory'
def find_temp_files(directory):
temp_files = []
for root, dirs, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
if os.path.isfile(file_path) and file_path.startswith('/tmp'):
temp_files.append(file_path)
return temp_files
def remove_temp_files(directory):
temp_files = find_temp_files(directory)
for temp_file in temp_files:
try:
os.remove(temp_file)
print(f"Removed temp file: {temp_file}")
except Exception as e:
print(f"Error removing temp file {temp_file}: {e}")
# # Example usage
# remove_temp_files('/tmp')
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders
def send_mail(user_mail, video_path):
# Email configuration
sender_email = '[email protected]'
receiver_email = user_mail
password = 'pzxb drfj aebj ypuv' # Normally, you should store sensitive information like passwords securely.
# Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart('alternative')
msg['Subject'] = 'From ShortsIn'
msg['From'] = sender_email
msg['To'] = receiver_email
# Create the plain-text and HTML version of your message
text = "Hello,"
html = """\
<html>
<body>
<p>Hello,<br>
Thankyou for using ShortsIn.
</p>
</body>
</html>
"""
# Attach parts into message container
part1 = MIMEText(text, 'plain')
part2 = MIMEText(html, 'html')
msg.attach(part1)
msg.attach(part2)
if os.path.isfile(video_path):
with open(video_path, 'rb') as attachment:
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header(
'Content-Disposition',
f'attachment; filename= {os.path.basename(video_path)}',
)
msg.attach(part)
else:
print(f"Error: The file {video_path} does not exist.")
# Connect to the SMTP server
try:
server = smtplib.SMTP('smtp.gmail.com', 587) # Example SMTP server and port
server.starttls() # Secure the connection
server.login(sender_email, password)
server.sendmail(sender_email, receiver_email, msg.as_string())
print('Email sent successfully!')
except Exception as e:
print(f'Error sending email: {str(e)}')
finally:
server.quit()