Spaces:
Runtime error
Runtime error
Prudvireddy
commited on
Upload 7 files
Browse files- Montserrat-Bold.ttf +0 -0
- agents.py +171 -0
- app.py +78 -0
- demo.py +100 -0
- requirements.txt +18 -0
- streamlit_app.py +83 -0
- tools.py +410 -0
Montserrat-Bold.ttf
ADDED
Binary file (29.6 kB). View file
|
|
agents.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from crewai import Agent, Task
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from tools import create_video_from_images_and_audio, image_generator, speech_generator, wiki_tool
|
4 |
+
import os
|
5 |
+
|
6 |
+
def get_agents_and_tasks(groq_api_key):
|
7 |
+
os.environ['GROQ_API_KEY'] = groq_api_key
|
8 |
+
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key=groq_api_key)
|
9 |
+
|
10 |
+
script_agent = Agent(
|
11 |
+
role='Senior Content Writer',
|
12 |
+
goal='Craft engaging, concise, and informative narrations for YouTube short videos',
|
13 |
+
backstory="""As a seasoned content writer, you excel at breaking down complex topics into captivating narratives that educate and entertain audiences. Your expertise lies in writing concise, attention-grabbing scripts for YouTube short videos.""",
|
14 |
+
verbose=True,
|
15 |
+
llm=llm,
|
16 |
+
allow_delegation=False
|
17 |
+
)
|
18 |
+
|
19 |
+
image_descriptive_agent = Agent(
|
20 |
+
role='Visual Storyteller',
|
21 |
+
goal='Design stunning, contextually relevant visual descriptions for YouTube short videos. The number of descriptions should not be greater than three',
|
22 |
+
backstory='With a keen eye for visual storytelling, you create compelling imagery that elevates the narrative and captivates the audience.',
|
23 |
+
verbose=True,
|
24 |
+
llm=llm,
|
25 |
+
allow_delegation=False
|
26 |
+
)
|
27 |
+
|
28 |
+
# img_speech_generating_agent = Agent(
|
29 |
+
# role='Multimedia Content Creator',
|
30 |
+
# goal='Generate high-quality images and speeches for YouTube short videos one after another based on provided descriptions.',
|
31 |
+
# backstory='As a multimedia expert, you excel at creating engaging multimedia content that brings stories to life.',
|
32 |
+
# verbose=True,
|
33 |
+
# llm=llm,
|
34 |
+
# allow_delegation=False
|
35 |
+
# )
|
36 |
+
|
37 |
+
img_speech_generating_agent = Agent(
|
38 |
+
role='Multimedia Content Creator',
|
39 |
+
goal='Generate high-quality images and speeches for YouTube short videos based on provided script',
|
40 |
+
backstory='As a multimedia expert, you excel at creating engaging multimedia content that brings stories to life.',
|
41 |
+
verbose=True,
|
42 |
+
llm=llm,
|
43 |
+
allow_delegation=False
|
44 |
+
)
|
45 |
+
|
46 |
+
editor = Agent(
|
47 |
+
role = 'Video editor',
|
48 |
+
goal = 'To make a video for YouTube shorts.',
|
49 |
+
backstory = "You are a video editor working for a YouTube creator",
|
50 |
+
verbose=True,
|
51 |
+
llm=llm,
|
52 |
+
allow_delegation = False,
|
53 |
+
tools = [create_video_from_images_and_audio]
|
54 |
+
)
|
55 |
+
|
56 |
+
content_generation_task = Task(
|
57 |
+
description='Generate engaging and informative content on the topic: {topic}. Use the provided tool, only if you have no idea about the given topic.',
|
58 |
+
expected_output="""Good corpus of text about: {topic}""",
|
59 |
+
agent=script_agent,
|
60 |
+
tools = [wiki_tool]
|
61 |
+
)
|
62 |
+
|
63 |
+
story_writing_task = Task(
|
64 |
+
description='Write an engaging narration for a YouTube short video on the topic: {topic}',
|
65 |
+
expected_output="""A short paragraph suitable for narrating in five seconds that provides an immersive experience to the audience. Follow the below example for output length and format.
|
66 |
+
|
67 |
+
**Example input:**
|
68 |
+
Ancient Wonders of the World
|
69 |
+
|
70 |
+
**Output format:**
|
71 |
+
Embark on a journey through time and marvel at the ancient wonders of the world!
|
72 |
+
From the majestic Great Pyramid of Giza, symbolizing the ingenuity of ancient Egypt,
|
73 |
+
to the Hanging Gardens of Babylon, an oasis of lush beauty amidst ancient Mesopotamia's arid landscape.
|
74 |
+
These remarkable structures continue to intrigue and inspire awe, reminding us of humanity's enduring quest for greatness.
|
75 |
+
""",
|
76 |
+
agent=script_agent
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
img_text_task = Task(
|
81 |
+
description='Given the narration, visually describe each sentence in the narration which will be used as a prompt for image generation.',
|
82 |
+
expected_output="""Sentences encoded in <narration> and <image> tags. Follow the example below for the output format.
|
83 |
+
|
84 |
+
**Example input:**
|
85 |
+
Embark on a journey through time and marvel at the ancient wonders of the world! From the majestic Great Pyramid of Giza, symbolizing the ingenuity of ancient Egypt, to the Hanging Gardens of Babylon, an oasis of lush beauty amidst ancient Mesopotamia's arid landscape. These remarkable structures continue to intrigue and inspire awe, reminding us of humanity's enduring quest for greatness.
|
86 |
+
|
87 |
+
**Output format:**
|
88 |
+
|
89 |
+
<narration>Embark on a journey through time and marvel at the ancient wonders of the world!</narration>
|
90 |
+
<image>A breathtaking view of various ancient wonders, showcasing their grandeur and mystery.</image>
|
91 |
+
|
92 |
+
<narration>From the majestic Great Pyramid of Giza, symbolizing the ingenuity of ancient Egypt,</narration>
|
93 |
+
<image>The majestic Great Pyramid of Giza, standing tall against the desert backdrop, a testament to ancient engineering.</image>
|
94 |
+
|
95 |
+
<narration>to the Hanging Gardens of Babylon, an oasis of lush beauty amidst ancient Mesopotamia's arid landscape,</narration>
|
96 |
+
<image>The Hanging Gardens of Babylon, lush greenery cascading from terraced gardens, amidst the arid Mesopotamian landscape.</image>
|
97 |
+
|
98 |
+
<narration>These remarkable structures continue to intrigue and inspire awe, reminding us of humanity's enduring quest for greatness.</narration>
|
99 |
+
<image>Visitors captivated by the beauty and historical significance of these ancient marvels, exploring and marveling.</image>
|
100 |
+
""",
|
101 |
+
agent=image_descriptive_agent,
|
102 |
+
context=[story_writing_task]
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
# process_script_task = Task(
|
108 |
+
# description="Extract text for image and speech generation from a provided script.",
|
109 |
+
# expected_output="A dictionary containing lists of texts for image generation and speech generation.",
|
110 |
+
# agent=ScriptSynthesizer
|
111 |
+
# )
|
112 |
+
|
113 |
+
# img_generation_task = Task(
|
114 |
+
# description='Given the input generate images for sequence of sentence enclosed in <image> tag.',
|
115 |
+
# expected_output="""Acknowledgement of image generation""",
|
116 |
+
# tools = [image_generator],
|
117 |
+
# context = [img_text_task],
|
118 |
+
# # async_execution=True,
|
119 |
+
# agent=img_speech_generating_agent
|
120 |
+
# )
|
121 |
+
|
122 |
+
# speech_generation_task = Task(
|
123 |
+
# description='Given the input generate speech for each sentence enclosed in <narration> tag.',
|
124 |
+
# expected_output="""Acknowledgement of speech generation""",
|
125 |
+
# tools = [speech_generator],
|
126 |
+
# context = [img_text_task],
|
127 |
+
# # async_execution=True,
|
128 |
+
# agent=img_speech_generating_agent
|
129 |
+
# )
|
130 |
+
img_generation_task = Task(
|
131 |
+
description='Given the script, use the given tool to generate images using {model}',
|
132 |
+
expected_output="""path of images folder""",
|
133 |
+
tools = [image_generator],
|
134 |
+
context = [img_text_task],
|
135 |
+
# async_execution=True,
|
136 |
+
agent=img_speech_generating_agent
|
137 |
+
)
|
138 |
+
|
139 |
+
speech_generation_task = Task(
|
140 |
+
description='Given the script, use the given tool to generate speech',
|
141 |
+
expected_output="""path of speeches folder""",
|
142 |
+
tools = [speech_generator],
|
143 |
+
context = [img_text_task],
|
144 |
+
# async_execution=True,
|
145 |
+
agent=img_speech_generating_agent
|
146 |
+
)
|
147 |
+
|
148 |
+
make_video_task = Task(
|
149 |
+
description = 'Create video using images and speeches from the forlders received from previous task.',
|
150 |
+
expected_output = "output video path",
|
151 |
+
agent=editor,
|
152 |
+
context = [img_generation_task, speech_generation_task]
|
153 |
+
)
|
154 |
+
|
155 |
+
agents = [
|
156 |
+
script_agent,
|
157 |
+
image_descriptive_agent,
|
158 |
+
img_speech_generating_agent,
|
159 |
+
editor
|
160 |
+
]
|
161 |
+
|
162 |
+
tasks = [
|
163 |
+
content_generation_task,
|
164 |
+
story_writing_task,
|
165 |
+
img_text_task,
|
166 |
+
img_generation_task,
|
167 |
+
speech_generation_task,
|
168 |
+
make_video_task
|
169 |
+
]
|
170 |
+
|
171 |
+
return agents, tasks
|
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
+
from crewai import Crew, Process
|
5 |
+
from agents import get_agents_and_tasks
|
6 |
+
|
7 |
+
|
8 |
+
def generate_video(topic, openai_api_key, stabilityai_api_key):
|
9 |
+
# os.environ['STABILITY_AI_API_KEY'] = stability_ai_api_key
|
10 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
11 |
+
grow_api_key = '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'
|
12 |
+
agents, tasks = get_agents_and_tasks(grow_api_key)
|
13 |
+
|
14 |
+
crew = Crew(
|
15 |
+
agents = agents,
|
16 |
+
tasks = tasks,
|
17 |
+
process = Process.sequential,
|
18 |
+
memory=True,
|
19 |
+
verbose=2
|
20 |
+
)
|
21 |
+
result = crew.kickoff(inputs={'topic': topic})
|
22 |
+
return result
|
23 |
+
|
24 |
+
intro = """
|
25 |
+
<!DOCTYPE html>
|
26 |
+
<html lang="en">
|
27 |
+
<head>
|
28 |
+
<meta charset="UTF-8">
|
29 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
30 |
+
<title>Shorts Generator Page</title>
|
31 |
+
<style>
|
32 |
+
.heading {
|
33 |
+
font-size: 24px;
|
34 |
+
font-weight: bold;
|
35 |
+
text-align: center;
|
36 |
+
}
|
37 |
+
.subheading {
|
38 |
+
font-size: 18px;
|
39 |
+
font-weight: bold;
|
40 |
+
text-align: center;
|
41 |
+
margin-top: 10px;
|
42 |
+
}
|
43 |
+
.additional-text {
|
44 |
+
font-size: 16px;
|
45 |
+
text-align: center;
|
46 |
+
margin-top: 20px;
|
47 |
+
white-space: pre-line; /* Preserve line breaks */
|
48 |
+
}
|
49 |
+
</style>
|
50 |
+
</head>
|
51 |
+
<body>
|
52 |
+
<div class="heading">
|
53 |
+
YouTube Shorts Creator
|
54 |
+
</div>
|
55 |
+
<div class="subheading">
|
56 |
+
Generate stunning short videos with simple text input
|
57 |
+
</div>
|
58 |
+
</body>
|
59 |
+
</html>
|
60 |
+
"""
|
61 |
+
|
62 |
+
with gr.Blocks(title='ShortsIn') as app:
|
63 |
+
|
64 |
+
gr.HTML(intro)
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
inp = gr.Textbox(label='Enter title here')
|
69 |
+
api = gr.Textbox(label='Enter your openai API key here')
|
70 |
+
btn = gr.Button('Generate', size='lg')
|
71 |
+
|
72 |
+
with gr.Column():
|
73 |
+
out = gr.Video(label='')
|
74 |
+
|
75 |
+
|
76 |
+
btn.click(fn=generate_video, inputs=[inp, api], outputs=out)
|
77 |
+
|
78 |
+
app.launch()
|
demo.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from crewai import Crew, Process
|
4 |
+
from agents import get_agents_and_tasks
|
5 |
+
from tools import send_mail
|
6 |
+
|
7 |
+
def generate_video(topic, openai_api_key, stabilityai_api_key, user_email):
|
8 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
9 |
+
grow_api_key = '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'
|
10 |
+
if stabilityai_api_key is not None:
|
11 |
+
os.environ['STABILITY_AI_API_KEY'] = stabilityai_api_key
|
12 |
+
model = 'Stability AI'
|
13 |
+
else:
|
14 |
+
model = 'Dalle-2'
|
15 |
+
agents, tasks = get_agents_and_tasks(grow_api_key)
|
16 |
+
|
17 |
+
crew = Crew(
|
18 |
+
agents=agents,
|
19 |
+
tasks=tasks,
|
20 |
+
process=Process.sequential,
|
21 |
+
memory=True,
|
22 |
+
verbose=2
|
23 |
+
)
|
24 |
+
result = crew.kickoff(inputs={'topic': topic, 'model' : model})
|
25 |
+
send_mail(user_email, result)
|
26 |
+
return result
|
27 |
+
|
28 |
+
# Custom CSS for styling
|
29 |
+
st.markdown(
|
30 |
+
"""
|
31 |
+
<style>
|
32 |
+
.heading {
|
33 |
+
font-size: 24px;
|
34 |
+
font-weight: bold;
|
35 |
+
text-align: center;
|
36 |
+
}
|
37 |
+
.subheading {
|
38 |
+
font-size: 18px;
|
39 |
+
font-weight: bold;
|
40 |
+
text-align: center;
|
41 |
+
margin-top: 10px;
|
42 |
+
}
|
43 |
+
.example-video-container {
|
44 |
+
display: flex;
|
45 |
+
flex-wrap: wrap;
|
46 |
+
justify-content: flex-start;
|
47 |
+
}
|
48 |
+
.example-video {
|
49 |
+
margin: 10px;
|
50 |
+
}
|
51 |
+
</style>
|
52 |
+
""",
|
53 |
+
unsafe_allow_html=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
# Main content area
|
57 |
+
st.markdown(
|
58 |
+
"""
|
59 |
+
<div class="heading">
|
60 |
+
YouTube Shorts Creator
|
61 |
+
</div>
|
62 |
+
<div class="subheading">
|
63 |
+
Generate stunning short videos with simple prompt
|
64 |
+
</div>
|
65 |
+
""",
|
66 |
+
unsafe_allow_html=True,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Space
|
70 |
+
st.text(" ")
|
71 |
+
|
72 |
+
# Main content for Input Details
|
73 |
+
st.markdown("## Input Details")
|
74 |
+
topic = st.text_input("Prompt")
|
75 |
+
openai_api_key = st.text_input("OpenAI API key")
|
76 |
+
size = st.selectbox('Size',
|
77 |
+
('512 X 512', '1024 X 1024', '9:16'))
|
78 |
+
stabilityai_api_key = None
|
79 |
+
if size=='9:16':
|
80 |
+
st.text_input('Stability Ai API key')
|
81 |
+
user_email = st.text_input("Email address", placeholder='[email protected]')
|
82 |
+
|
83 |
+
if st.button("Mail Me!"):
|
84 |
+
st.text(f"Video will be sent to {user_email}")
|
85 |
+
result = generate_video(topic, openai_api_key, stabilityai_api_key, user_email)
|
86 |
+
#st.success(result)
|
87 |
+
# In a real scenario, you would send the generated video to the user's email here
|
88 |
+
|
89 |
+
# Sidebar for Example Videos
|
90 |
+
st.sidebar.markdown("### Example Videos")
|
91 |
+
example_paths = os.listdir('results')
|
92 |
+
examples = [os.path.join('results', i) for i in example_paths]
|
93 |
+
|
94 |
+
# Display videos in a row
|
95 |
+
st.sidebar.markdown('<div class="example-video-container">', unsafe_allow_html=True)
|
96 |
+
for video_url in examples:
|
97 |
+
title = video_url.split('\\')[1].split('.')[0]
|
98 |
+
st.sidebar.text(f"input: {title}")
|
99 |
+
st.sidebar.video(video_url, format="video/mp4", start_time=0)
|
100 |
+
st.sidebar.markdown("</div>", unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gradio
|
3 |
+
ffmpeg
|
4 |
+
pysqlite3-binary
|
5 |
+
embedchain
|
6 |
+
crewai
|
7 |
+
crewai-tools
|
8 |
+
langchain_groq
|
9 |
+
langchain
|
10 |
+
langchain_community
|
11 |
+
moviepy
|
12 |
+
opencv-python-headless
|
13 |
+
opencv-python
|
14 |
+
gradio
|
15 |
+
wikipedia
|
16 |
+
gtts
|
17 |
+
openai
|
18 |
+
pydub
|
streamlit_app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from crewai import Crew, Process
|
4 |
+
from agents import get_agents_and_tasks
|
5 |
+
from tools import send_mail
|
6 |
+
|
7 |
+
def generate_video(topic, openai_api_key, stabilityai_api_key, user_mail):
|
8 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
9 |
+
grow_api_key = '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'
|
10 |
+
if stabilityai_api_key is not None:
|
11 |
+
os.environ['STABILITY_AI_API_KEY'] = stabilityai_api_key
|
12 |
+
model = 'Stability AI'
|
13 |
+
else:
|
14 |
+
model = 'Dalle-2'
|
15 |
+
agents, tasks = get_agents_and_tasks(grow_api_key)
|
16 |
+
|
17 |
+
crew = Crew(
|
18 |
+
agents=agents,
|
19 |
+
tasks=tasks,
|
20 |
+
process=Process.sequential,
|
21 |
+
memory=True,
|
22 |
+
verbose=2
|
23 |
+
)
|
24 |
+
result = crew.kickoff(inputs={'topic': topic, 'model' : model})
|
25 |
+
send_mail(user_mail, result)
|
26 |
+
return result
|
27 |
+
|
28 |
+
st.markdown("""
|
29 |
+
<style>
|
30 |
+
.heading {
|
31 |
+
font-size: 24px;
|
32 |
+
font-weight: bold;
|
33 |
+
text-align: center;
|
34 |
+
}
|
35 |
+
.subheading {
|
36 |
+
font-size: 18px;
|
37 |
+
font-weight: bold;
|
38 |
+
text-align: center;
|
39 |
+
margin-top: 10px;
|
40 |
+
}
|
41 |
+
</style>
|
42 |
+
""", unsafe_allow_html=True)
|
43 |
+
|
44 |
+
st.markdown("""
|
45 |
+
<div class="heading">
|
46 |
+
YouTube Shorts Creator
|
47 |
+
</div>
|
48 |
+
<div class="subheading">
|
49 |
+
Generate stunning short videos with simple text input
|
50 |
+
</div>
|
51 |
+
""", unsafe_allow_html=True)
|
52 |
+
|
53 |
+
st.text(" ")
|
54 |
+
|
55 |
+
topic = st.text_input('Enter title here')
|
56 |
+
openai_api_key = st.text_input('Enter your OpenAI API key here')
|
57 |
+
size = st.selectbox('Size',
|
58 |
+
('512 X 512', '1024 X 1024', '9:16'))
|
59 |
+
stabilityai_api_key = None
|
60 |
+
if size=='9:16':
|
61 |
+
stabilityai_api_key = st.text_input('Enter your stability ai API key here')
|
62 |
+
mail = st.text_input('Enter you email address')
|
63 |
+
|
64 |
+
if st.button('Generate'):
|
65 |
+
st.text(f"Video will be sent to {mail}")
|
66 |
+
result = generate_video(topic, openai_api_key, stabilityai_api_key, mail)
|
67 |
+
# with open(result, 'rb') as video_file:
|
68 |
+
# video_data = video_file.read()
|
69 |
+
# st.video(video_data)
|
70 |
+
|
71 |
+
# Sidebar for Example Videos
|
72 |
+
st.sidebar.markdown("### Example Videos")
|
73 |
+
example_paths = os.listdir('results')
|
74 |
+
examples = [os.path.join('results', i) for i in example_paths]
|
75 |
+
|
76 |
+
# Display videos in a row
|
77 |
+
st.sidebar.markdown('<div class="example-video-container">', unsafe_allow_html=True)
|
78 |
+
for video_url in examples:
|
79 |
+
title = video_url.split('\\')[1].split('.')[0]
|
80 |
+
st.sidebar.text(f"input: {title}")
|
81 |
+
st.sidebar.video(video_url, format="video/mp4", start_time=0)
|
82 |
+
st.sidebar.markdown("</div>", unsafe_allow_html=True)
|
83 |
+
|
tools.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from crewai import Task, Agent, Crew, Process
|
2 |
+
from langchain.tools import tool, Tool
|
3 |
+
import re
|
4 |
+
import os
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
# llm = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048)
|
7 |
+
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key='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')
|
8 |
+
from langchain_community.tools import WikipediaQueryRun
|
9 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
10 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
11 |
+
import requests
|
12 |
+
# import pyttsx3
|
13 |
+
import io
|
14 |
+
import tempfile
|
15 |
+
from gtts import gTTS
|
16 |
+
from pydub import AudioSegment
|
17 |
+
from groq import Groq
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
from PIL import Image, ImageDraw, ImageFont
|
21 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip
|
22 |
+
from openai import OpenAI
|
23 |
+
|
24 |
+
def split_text_into_chunks(text, chunk_size):
|
25 |
+
words = text.split()
|
26 |
+
return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
27 |
+
|
28 |
+
def add_text_to_video(input_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
|
29 |
+
outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.3,
|
30 |
+
font_path='Montserrat-Bold.ttf'):
|
31 |
+
temp_output_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
32 |
+
output_video = temp_output_file.name
|
33 |
+
|
34 |
+
chunks = split_text_into_chunks(text, 3) # Adjust chunk size as needed
|
35 |
+
|
36 |
+
cap = cv2.VideoCapture(input_video)
|
37 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
38 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
39 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
40 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
41 |
+
out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))
|
42 |
+
|
43 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
44 |
+
chunk_duration_frames = duration * fps
|
45 |
+
delay_frames = int(delay_between_chunks * fps)
|
46 |
+
|
47 |
+
font = ImageFont.truetype(font_path, fontsize)
|
48 |
+
|
49 |
+
current_frame = 0
|
50 |
+
|
51 |
+
while cap.isOpened():
|
52 |
+
ret, frame = cap.read()
|
53 |
+
if not ret:
|
54 |
+
break
|
55 |
+
|
56 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
57 |
+
draw = ImageDraw.Draw(frame_pil)
|
58 |
+
|
59 |
+
chunk_index = current_frame // (chunk_duration_frames + delay_frames)
|
60 |
+
|
61 |
+
if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
|
62 |
+
chunk = chunks[chunk_index]
|
63 |
+
text_bbox = draw.textbbox((0, 0), chunk, font=font)
|
64 |
+
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
65 |
+
text_x = (width - text_width) // 2
|
66 |
+
text_y = height - 400 # Position text at the bottom
|
67 |
+
|
68 |
+
if text_width > width:
|
69 |
+
words = chunk.split()
|
70 |
+
half = len(words) // 2
|
71 |
+
line1 = ' '.join(words[:half])
|
72 |
+
line2 = ' '.join(words[half:])
|
73 |
+
|
74 |
+
text_size_line1 = draw.textsize(line1, font=font)
|
75 |
+
text_size_line2 = draw.textsize(line2, font=font)
|
76 |
+
text_x_line1 = (width - text_size_line1[0]) // 2
|
77 |
+
text_x_line2 = (width - text_size_line2[0]) // 2
|
78 |
+
text_y = height - 250 - text_size_line1[1] # Adjust vertical position for two lines
|
79 |
+
|
80 |
+
for dx in range(-outline_thickness, outline_thickness + 1):
|
81 |
+
for dy in range(-outline_thickness, outline_thickness + 1):
|
82 |
+
if dx != 0 or dy != 0:
|
83 |
+
draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
|
84 |
+
draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
|
85 |
+
|
86 |
+
draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
|
87 |
+
draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=fontcolor)
|
88 |
+
|
89 |
+
else:
|
90 |
+
for dx in range(-outline_thickness, outline_thickness + 1):
|
91 |
+
for dy in range(-outline_thickness, outline_thickness + 1):
|
92 |
+
if dx != 0 or dy != 0:
|
93 |
+
draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
|
94 |
+
|
95 |
+
draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)
|
96 |
+
|
97 |
+
frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)
|
98 |
+
|
99 |
+
out.write(frame)
|
100 |
+
current_frame += 1
|
101 |
+
|
102 |
+
# Ensure loop breaks after processing all frames
|
103 |
+
if current_frame >= frame_count:
|
104 |
+
break
|
105 |
+
|
106 |
+
cap.release()
|
107 |
+
out.release()
|
108 |
+
cv2.destroyAllWindows()
|
109 |
+
|
110 |
+
return output_video
|
111 |
+
|
112 |
+
def apply_zoom_in_effect(clip, zoom_factor=1.2):
|
113 |
+
width, height = clip.size
|
114 |
+
duration = clip.duration
|
115 |
+
|
116 |
+
def zoom_in_effect(get_frame, t):
|
117 |
+
frame = get_frame(t)
|
118 |
+
zoom = 1 + (zoom_factor - 1) * (t / duration)
|
119 |
+
new_width, new_height = int(width * zoom), int(height * zoom)
|
120 |
+
resized_frame = cv2.resize(frame, (new_width, new_height))
|
121 |
+
|
122 |
+
x_start = (new_width - width) // 2
|
123 |
+
y_start = (new_height - height) // 2
|
124 |
+
cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
|
125 |
+
|
126 |
+
return cropped_frame
|
127 |
+
|
128 |
+
return clip.fl(zoom_in_effect, apply_to=['mask'])
|
129 |
+
|
130 |
+
@tool
|
131 |
+
def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
|
132 |
+
"""Creates video using images and audios.
|
133 |
+
Args:
|
134 |
+
images_dir: path to images folder
|
135 |
+
speeches_dir: path to speeches folder"""
|
136 |
+
client = Groq(api_key='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')
|
137 |
+
# images_paths = sorted(os.listdir(images_dir))
|
138 |
+
# audio_paths = sorted(os.listdir(speeches_dir))
|
139 |
+
images_paths = sorted([os.path.join(images_dir, img) for img in os.listdir(images_dir) if img.endswith('.png') or img.endswith('.jpg')])
|
140 |
+
audio_paths = sorted([os.path.join(speeches_dir, speech) for speech in os.listdir(speeches_dir) if speech.endswith('.mp3')])
|
141 |
+
clips = []
|
142 |
+
temp_files = []
|
143 |
+
|
144 |
+
for i in range(min(len(images_paths), len(audio_paths))):
|
145 |
+
img_clip = ImageClip(os.path.join(images_dir, images_paths[i]))
|
146 |
+
audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i]))
|
147 |
+
videoclip = img_clip.set_duration(audioclip.duration)
|
148 |
+
zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
|
149 |
+
|
150 |
+
with open(os.path.join(speeches_dir, audio_paths[i]), "rb") as file:
|
151 |
+
transcription = client.audio.transcriptions.create(
|
152 |
+
file=(audio_paths[i], file.read()),
|
153 |
+
model="whisper-large-v3",
|
154 |
+
response_format="verbose_json",
|
155 |
+
)
|
156 |
+
caption = transcription.text
|
157 |
+
temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
158 |
+
zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
|
159 |
+
temp_files.append(temp_video_path)
|
160 |
+
|
161 |
+
final_video_path = add_text_to_video(temp_video_path, caption, duration=1, fontsize=60)
|
162 |
+
temp_files.append(final_video_path)
|
163 |
+
|
164 |
+
final_clip = VideoFileClip(final_video_path)
|
165 |
+
final_clip = final_clip.set_audio(audioclip)
|
166 |
+
|
167 |
+
print(f'create small video {i}')
|
168 |
+
clips.append(final_clip)
|
169 |
+
|
170 |
+
final_clip = concatenate_videoclips(clips)
|
171 |
+
temp_final_video = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
172 |
+
final_clip.write_videofile(temp_final_video, codec='libx264', fps=24)
|
173 |
+
|
174 |
+
# Close all video files properly
|
175 |
+
for clip in clips:
|
176 |
+
clip.close()
|
177 |
+
|
178 |
+
# Remove all temporary files
|
179 |
+
for temp_file in temp_files:
|
180 |
+
try:
|
181 |
+
os.remove(temp_file)
|
182 |
+
except Exception as e:
|
183 |
+
print(f"Error removing file {temp_file}: {e}")
|
184 |
+
|
185 |
+
return temp_final_video
|
186 |
+
|
187 |
+
from langchain.pydantic_v1 import BaseModel, Field
|
188 |
+
from langchain_community.tools import WikipediaQueryRun
|
189 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
190 |
+
|
191 |
+
class WikiInputs(BaseModel):
|
192 |
+
"""Inputs to the wikipedia tool."""
|
193 |
+
query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")
|
194 |
+
|
195 |
+
api_wrapper = WikipediaAPIWrapper(top_k_results=2)#, doc_content_chars_max=100)
|
196 |
+
|
197 |
+
wiki_tool = WikipediaQueryRun(
|
198 |
+
name="wiki-tool",
|
199 |
+
description="{query:'input here'}",
|
200 |
+
args_schema=WikiInputs,
|
201 |
+
api_wrapper=api_wrapper,
|
202 |
+
return_direct=True,
|
203 |
+
)
|
204 |
+
|
205 |
+
wiki = Tool(
|
206 |
+
name = 'wikipedia',
|
207 |
+
func = wiki_tool.run,
|
208 |
+
description= "{query:'input here'}"
|
209 |
+
)
|
210 |
+
|
211 |
+
def process_script(script):
|
212 |
+
"""Used to process the script into dictionary format"""
|
213 |
+
dict = {}
|
214 |
+
text_for_image_generation = re.findall(r'<image>(.*?)</?image>', script, re.DOTALL)
|
215 |
+
text_for_speech_generation = re.findall(r'<narration>(.*?)</?narration>', script, re.DOTALL)
|
216 |
+
dict['text_for_image_generation'] = text_for_image_generation
|
217 |
+
dict['text_for_speech_generation'] = text_for_speech_generation
|
218 |
+
return dict
|
219 |
+
|
220 |
+
def generate_speech(text, lang='en', speed=1.15, num=0):
|
221 |
+
"""
|
222 |
+
Generates speech for the given script using gTTS and adjusts the speed.
|
223 |
+
"""
|
224 |
+
temp_speech_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
225 |
+
temp_speech_path = temp_speech_file.name
|
226 |
+
|
227 |
+
tts = gTTS(text=text, lang=lang)
|
228 |
+
tts.save(temp_speech_path)
|
229 |
+
|
230 |
+
sound = AudioSegment.from_file(temp_speech_path)
|
231 |
+
if speed != 1.0:
|
232 |
+
sound_with_altered_speed = sound._spawn(sound.raw_data, overrides={
|
233 |
+
"frame_rate": int(sound.frame_rate * speed)
|
234 |
+
}).set_frame_rate(sound.frame_rate)
|
235 |
+
sound_with_altered_speed.export(temp_speech_path, format="mp3")
|
236 |
+
else:
|
237 |
+
sound.export(temp_speech_path, format="mp3")
|
238 |
+
|
239 |
+
temp_speech_file.close()
|
240 |
+
return temp_speech_path
|
241 |
+
|
242 |
+
@tool
|
243 |
+
def image_generator(script, model):
|
244 |
+
"""Generates images for the given script.
|
245 |
+
Saves it to a temporary directory and returns the path.
|
246 |
+
Args:
|
247 |
+
script: a complete script containing narrations and image descriptions.
|
248 |
+
model: image generation model used to generate images, can be 'Stability' or 'Dalle-2'"""
|
249 |
+
|
250 |
+
remove_temp_files('/tmp')
|
251 |
+
|
252 |
+
images_dir = tempfile.mkdtemp()
|
253 |
+
dict = process_script(script)
|
254 |
+
|
255 |
+
if model == 'Stability':
|
256 |
+
|
257 |
+
for i, text in enumerate(dict['text_for_image_generation']):
|
258 |
+
try:
|
259 |
+
response = requests.post(
|
260 |
+
f"https://api.stability.ai/v2beta/stable-image/generate/core",
|
261 |
+
headers={
|
262 |
+
"authorization": os.environ.get('STABILITY_AI_API_KEY'),
|
263 |
+
"accept": "image/*"
|
264 |
+
},
|
265 |
+
files={"none": ''},
|
266 |
+
data={
|
267 |
+
"prompt": text,
|
268 |
+
"output_format": "png",
|
269 |
+
'aspect_ratio': "9:16",
|
270 |
+
},
|
271 |
+
)
|
272 |
+
print(f'image {i} generated')
|
273 |
+
if response.status_code == 200:
|
274 |
+
with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
|
275 |
+
file.write(response.content)
|
276 |
+
else:
|
277 |
+
raise Exception(str(response.json()))
|
278 |
+
except Exception as e:
|
279 |
+
raise Exception(f"Image generation failed: {e}")
|
280 |
+
|
281 |
+
elif model == 'Dalle-2':
|
282 |
+
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
283 |
+
for i, text in enumerate(dict['text_for_image_generation']):
|
284 |
+
try:
|
285 |
+
response = client.images.generate(
|
286 |
+
model="dall-e-2",
|
287 |
+
prompt=text,
|
288 |
+
size="1024x1024",
|
289 |
+
quality="standard",
|
290 |
+
n=1
|
291 |
+
)
|
292 |
+
image_url = response.data[0].url
|
293 |
+
|
294 |
+
print(f'image {i} generated')
|
295 |
+
# Download the image
|
296 |
+
image_response = requests.get(image_url)
|
297 |
+
if image_response.status_code == 200:
|
298 |
+
with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
|
299 |
+
file.write(image_response.content)
|
300 |
+
else:
|
301 |
+
raise Exception(f"Failed to download image with status code {image_response.status_code} and message: {image_response.text}")
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
raise Exception(f"Image generation failed: {e}")
|
305 |
+
|
306 |
+
return f'images are stored in {images_dir} directory'
|
307 |
+
|
308 |
+
@tool
|
309 |
+
def speech_generator(script):
|
310 |
+
"""
|
311 |
+
Generates speech files for the given script using gTTS.
|
312 |
+
Saves them to a temporary directory and returns the path.
|
313 |
+
Args:
|
314 |
+
script: a complete script containing narrations and image descriptions.
|
315 |
+
"""
|
316 |
+
speeches_dir = tempfile.mkdtemp()
|
317 |
+
|
318 |
+
dict = process_script(script)
|
319 |
+
for i, text in enumerate(dict['text_for_speech_generation']):
|
320 |
+
speech_path = generate_speech(text, num=i)
|
321 |
+
print(f'speech {i} generated')
|
322 |
+
os.rename(speech_path, os.path.join(speeches_dir, f'speech_{i}.mp3'))
|
323 |
+
|
324 |
+
return f'images are stored in {speeches_dir} directory'
|
325 |
+
|
326 |
+
def find_temp_files(directory):
|
327 |
+
temp_files = []
|
328 |
+
|
329 |
+
for root, dirs, files in os.walk(directory):
|
330 |
+
for file in files:
|
331 |
+
file_path = os.path.join(root, file)
|
332 |
+
if os.path.isfile(file_path) and file_path.startswith('/tmp'):
|
333 |
+
temp_files.append(file_path)
|
334 |
+
|
335 |
+
return temp_files
|
336 |
+
|
337 |
+
def remove_temp_files(directory):
|
338 |
+
temp_files = find_temp_files(directory)
|
339 |
+
|
340 |
+
for temp_file in temp_files:
|
341 |
+
try:
|
342 |
+
os.remove(temp_file)
|
343 |
+
print(f"Removed temp file: {temp_file}")
|
344 |
+
except Exception as e:
|
345 |
+
print(f"Error removing temp file {temp_file}: {e}")
|
346 |
+
|
347 |
+
# # Example usage
|
348 |
+
# remove_temp_files('/tmp')
|
349 |
+
|
350 |
+
import smtplib
|
351 |
+
from email.mime.text import MIMEText
|
352 |
+
from email.mime.multipart import MIMEMultipart
|
353 |
+
from email.mime.base import MIMEBase
|
354 |
+
from email import encoders
|
355 |
+
|
356 |
+
def send_mail(user_mail, video_path):
|
357 |
+
# Email configuration
|
358 |
+
sender_email = '[email protected]'
|
359 |
+
receiver_email = user_mail
|
360 |
+
password = 'pzxb drfj aebj ypuv' # Normally, you should store sensitive information like passwords securely.
|
361 |
+
|
362 |
+
# Create message container - the correct MIME type is multipart/alternative.
|
363 |
+
msg = MIMEMultipart('alternative')
|
364 |
+
msg['Subject'] = 'From ShortsIn'
|
365 |
+
msg['From'] = sender_email
|
366 |
+
msg['To'] = receiver_email
|
367 |
+
|
368 |
+
# Create the plain-text and HTML version of your message
|
369 |
+
text = "Hello,"
|
370 |
+
html = """\
|
371 |
+
<html>
|
372 |
+
<body>
|
373 |
+
<p>Hello,<br>
|
374 |
+
Thankyou for using ShortsIn.
|
375 |
+
</p>
|
376 |
+
</body>
|
377 |
+
</html>
|
378 |
+
"""
|
379 |
+
|
380 |
+
# Attach parts into message container
|
381 |
+
part1 = MIMEText(text, 'plain')
|
382 |
+
part2 = MIMEText(html, 'html')
|
383 |
+
|
384 |
+
msg.attach(part1)
|
385 |
+
msg.attach(part2)
|
386 |
+
|
387 |
+
if os.path.isfile(video_path):
|
388 |
+
with open(video_path, 'rb') as attachment:
|
389 |
+
part = MIMEBase('application', 'octet-stream')
|
390 |
+
part.set_payload(attachment.read())
|
391 |
+
encoders.encode_base64(part)
|
392 |
+
part.add_header(
|
393 |
+
'Content-Disposition',
|
394 |
+
f'attachment; filename= {os.path.basename(video_path)}',
|
395 |
+
)
|
396 |
+
msg.attach(part)
|
397 |
+
else:
|
398 |
+
print(f"Error: The file {video_path} does not exist.")
|
399 |
+
|
400 |
+
# Connect to the SMTP server
|
401 |
+
try:
|
402 |
+
server = smtplib.SMTP('smtp.gmail.com', 587) # Example SMTP server and port
|
403 |
+
server.starttls() # Secure the connection
|
404 |
+
server.login(sender_email, password)
|
405 |
+
server.sendmail(sender_email, receiver_email, msg.as_string())
|
406 |
+
print('Email sent successfully!')
|
407 |
+
except Exception as e:
|
408 |
+
print(f'Error sending email: {str(e)}')
|
409 |
+
finally:
|
410 |
+
server.quit()
|