ProfessorLeVesseur's picture
Update app.py
f3e227d verified
raw
history blame
16.2 kB
import streamlit as st
import openai
import random
# Fetch the OpenAI API key from Streamlit secrets
openai_api_key = st.secrets["openai_api_key"]
openai_api_key = "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"
# Initialize the OpenAI service with API key
openai.api_key = openai_api_key
# # Fetch Pinecone API key and environment from Streamlit secrets
# PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"]
# # pinecone_api_key = '555c0e70-331d-4b43-aac7-5b3aac5078d6'
# pinecone_environment = st.secrets["pinecone_environment"]
# # AUTHENTICATE/INITIALIZE PINCONE SERVICE
from pinecone import Pinecone
# # pc = Pinecone(api_key=PINECONE_API_KEY)
# pc = Pinecone (api_key= 'YOUR_API_KEY')
PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6"
pc = Pinecone(api_key=PINECONE_API_KEY)
# Hardcode the OpenAI API key
OPENAI_API_KEY = "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"
# import os
# Retrieve OpenAI API key from environment variables
openai_api_key = os.getenv('OPENAI_API_KEY')
# Initialize the OpenAI service with API key
openai.api_key = openai_api_key
# AUTHENTICATE/INITIALIZE PINCONE SERVICE
from pinecone import Pinecone
pc = Pinecone()
# # Define the name of the Pinecone index
index_name = 'mimtssinkqa'
# Initialize the OpenAI embeddings object
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# LOAD VECTOR STORE FROM EXISTING INDEX
from langchain_community.vectorstores import Pinecone
vector_store = Pinecone.from_existing_index(index_name='mimtssinkqa', embedding=embeddings)
def ask_with_memory(vector_store, query, chat_history=[]):
from langchain_openai import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5)
retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
system_template = r'''
Use the following pieces of context to answer the user's question. The title of the article is Intensifying literacy Instruction: Essential Practices. Do not mention the Header unless asked.
----------------
Context: ```{context}```
'''
user_template = '''
Question: ```{question}```
Chat History: ```{chat_history}```
'''
messages= [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template(user_template)
]
qa_prompt = ChatPromptTemplate.from_messages (messages)
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory,chain_type='stuff', combine_docs_chain_kwargs={'prompt': qa_prompt}, verbose=False
)
result = chain.invoke({'question': query, 'chat_history': st.session_state['history']})
# Append to chat history as a dictionary
st.session_state['history'].append((query, result['answer']))
return (result['answer'])
# Initialize chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# # STREAMLIT APPLICATION SETUP WITH PASSWORD
# Define the correct password
# correct_password = "MiBLSi"
#Add the image with a specified width
image_width = 300 # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)
st.subheader('Ink QA™ | Dynamic PDFs')
# Using Markdown for formatted text
st.markdown("""
Resource: **Intensifying Literacy Instruction: Essential Practices**
""", unsafe_allow_html=True)
with st.sidebar:
# Password input field
# password = st.text_input("Enter Password:", type="password")
st.image('mimtss.png', width=200)
st.image('Literacy_Cover.png', width=200)
st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
Audio_Header_text = """
**Tune into Dr. St. Martin's introduction**"""
st.markdown(Audio_Header_text)
# Path or URL to the audio file
audio_file_path = 'Audio_Introduction_Literacy.m4a'
# Display the audio player widget
st.audio(audio_file_path, format='audio/mp4', start_time=0)
# Citation text with Markdown formatting
citation_Content_text = """
**Citation**
St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
**Table of Contents**
* **Introduction**: pg. 1
* **Intensifying Literacy Instruction: Essential Practices**: pg. 4
* **Purpose**: pg. 4
* **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
* **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
* **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
* **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
* **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
* **Motivation and Engagement**: pg. 28
* **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
* **Summary**: pg. 29
* **Endnotes**: pg. 30
* **Acknowledgment**: pg. 39
"""
st.markdown(citation_Content_text)
# if password == correct_password:
# Define a list of possible placeholder texts
placeholders = [
'Example: Summarize the article in 200 words or less',
'Example: What are the essential practices?',
'Example: I am a teacher, why is this resource important?',
'Example: How can this resource support my instruction in reading and writing?',
'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
'Example: How does this resource address the needs of students scoring below the 20th percentile?',
'Example: Are there assessment tools included in this resource to monitor student progress?',
'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
"Example: How can this resource be used to support students' social-emotional development?",
"Example: How does this resource align with the district's literacy goals and objectives?",
'Example: What research and evidence support the effectiveness of this resource?',
'Example: Does this resource provide guidance on implementation fidelity'
]
# Select a random placeholder from the list
if 'placeholder' not in st.session_state:
st.session_state.placeholder = random.choice(placeholders)
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# q = st.text_input(label='Ask a question or make a request ', value='')
if q:
with st.spinner('Thinking...'):
answer = ask_with_memory(vector_store, q, st.session_state.history)
# Display the response in a text area
st.text_area('Response: ', value=answer, height=400, key="response_text_area")
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
# Prepare chat history text for display
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
# Prepare chat history text for display in reverse order
history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))
# Display chat history
st.text_area('Chat History', value=history_text, height=800)
# import streamlit as st
# import pinecone
# from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.vectorstores import Pinecone, Chroma
# from langchain.chains import RetrievalQA
# from langchain.chat_models import ChatOpenAI
# import tiktoken
# import random
# # Fetch the OpenAI API key from Streamlit secrets
# openai_api_key = st.secrets["openai_api_key"]
# # Fetch Pinecone API key and environment from Streamlit secrets
# pinecone_api_key = st.secrets["pinecone_api_key"]
# pinecone_environment = st.secrets["pinecone_environment"]
# # Initialize Pinecone
# pinecone.init(api_key=pinecone_api_key, environment=pinecone_environment)
# # Define the name of the Pinecone index
# index_name = 'mi-resource-qa'
# # Initialize the OpenAI embeddings object with the hardcoded API key
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# # Define functions
# def insert_or_fetch_embeddings(index_name):
# if index_name in pinecone.list_indexes():
# vector_store = Pinecone.from_existing_index(index_name, embeddings)
# return vector_store
# else:
# raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.")
# # Initialize or fetch Pinecone vector store
# vector_store = insert_or_fetch_embeddings(index_name)
# # calculate embedding cost using tiktoken
# def calculate_embedding_cost(text):
# import tiktoken
# enc = tiktoken.encoding_for_model('text-embedding-ada-002')
# total_tokens = len(enc.encode(text))
# # print(f'Total Tokens: {total_tokens}')
# # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
# return total_tokens, total_tokens / 1000 * 0.0004
# def ask_with_memory(vector_store, query, chat_history=[]):
# from langchain.chains import ConversationalRetrievalChain
# from langchain.chat_models import ChatOpenAI
# llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key)
# # The retriever is created with metadata filter directly in search_kwargs
# # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}})
# retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}})
# chain= ConversationalRetrievalChain.from_llm(llm, retriever)
# result = chain({'question': query, 'chat_history': st.session_state['history']})
# # Append to chat history as a dictionary
# st.session_state['history'].append((query, result['answer']))
# return (result['answer'])
# # Initialize chat history
# if 'history' not in st.session_state:
# st.session_state['history'] = []
# # # STREAMLIT APPLICATION SETUP WITH PASSWORD
# # Define the correct password
# # correct_password = "MiBLSi"
# #Add the image with a specified width
# image_width = 300 # Set the desired width in pixels
# st.image('MTSS.ai_Logo.png', width=image_width)
# st.subheader('Ink QA™ | Dynamic PDFs')
# # Using Markdown for formatted text
# st.markdown("""
# Resource: **Intensifying Literacy Instruction: Essential Practices**
# """, unsafe_allow_html=True)
# with st.sidebar:
# # Password input field
# # password = st.text_input("Enter Password:", type="password")
# st.image('mimtss.png', width=200)
# st.image('Literacy_Cover.png', width=200)
# st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
# Audio_Header_text = """
# **Tune into Dr. St. Martin's introduction**"""
# st.markdown(Audio_Header_text)
# # Path or URL to the audio file
# audio_file_path = 'Audio_Introduction_Literacy.m4a'
# # Display the audio player widget
# st.audio(audio_file_path, format='audio/mp4', start_time=0)
# # Citation text with Markdown formatting
# citation_Content_text = """
# **Citation**
# St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
# **Table of Contents**
# * **Introduction**: pg. 1
# * **Intensifying Literacy Instruction: Essential Practices**: pg. 4
# * **Purpose**: pg. 4
# * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
# * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
# * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
# * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
# * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
# * **Motivation and Engagement**: pg. 28
# * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
# * **Summary**: pg. 29
# * **Endnotes**: pg. 30
# * **Acknowledgment**: pg. 39
# """
# st.markdown(citation_Content_text)
# # if password == correct_password:
# # Define a list of possible placeholder texts
# placeholders = [
# 'Example: Summarize the article in 200 words or less',
# 'Example: What are the essential practices?',
# 'Example: I am a teacher, why is this resource important?',
# 'Example: How can this resource support my instruction in reading and writing?',
# 'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
# 'Example: How does this resource address the needs of students scoring below the 20th percentile?',
# 'Example: Are there assessment tools included in this resource to monitor student progress?',
# 'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
# "Example: How can this resource be used to support students' social-emotional development?",
# "Example: How does this resource align with the district's literacy goals and objectives?",
# 'Example: What research and evidence support the effectiveness of this resource?',
# 'Example: Does this resource provide guidance on implementation fidelity'
# ]
# # Select a random placeholder from the list
# if 'placeholder' not in st.session_state:
# st.session_state.placeholder = random.choice(placeholders)
# q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# # q = st.text_input(label='Ask a question or make a request ', value='')
# k = 3 # Set k to 3
# # # Initialize chat history if not present
# # if 'history' not in st.session_state:
# # st.session_state.history = []
# if q:
# with st.spinner('Thinking...'):
# answer = ask_with_memory(vector_store, q, st.session_state.history)
# # Display the response in a text area
# st.text_area('Response: ', value=answer, height=400, key="response_text_area")
# st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
# # # Prepare chat history text for display
# # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
# # Prepare chat history text for display in reverse order
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))
# # Display chat history
# st.text_area('Chat History', value=history_text, height=800)