import streamlit as st | |
import openai | |
import random | |
# Fetch the OpenAI API key from Streamlit secrets | |
openai_api_key = st.secrets["openai_api_key"] | |
openai_api_key = "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" | |
# Initialize the OpenAI service with API key | |
openai.api_key = openai_api_key | |
# # Fetch Pinecone API key and environment from Streamlit secrets | |
# PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"] | |
# # pinecone_api_key = '555c0e70-331d-4b43-aac7-5b3aac5078d6' | |
# pinecone_environment = st.secrets["pinecone_environment"] | |
# # AUTHENTICATE/INITIALIZE PINCONE SERVICE | |
from pinecone import Pinecone | |
# # pc = Pinecone(api_key=PINECONE_API_KEY) | |
# pc = Pinecone (api_key= 'YOUR_API_KEY') | |
PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6" | |
pc = Pinecone(api_key=PINECONE_API_KEY) | |
# Hardcode the OpenAI API key | |
OPENAI_API_KEY = "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" | |
# import os | |
# Retrieve OpenAI API key from environment variables | |
openai_api_key = os.getenv('OPENAI_API_KEY') | |
# Initialize the OpenAI service with API key | |
openai.api_key = openai_api_key | |
# AUTHENTICATE/INITIALIZE PINCONE SERVICE | |
from pinecone import Pinecone | |
pc = Pinecone() | |
# # Define the name of the Pinecone index | |
index_name = 'mimtssinkqa' | |
# Initialize the OpenAI embeddings object | |
from langchain_openai import OpenAIEmbeddings | |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
# LOAD VECTOR STORE FROM EXISTING INDEX | |
from langchain_community.vectorstores import Pinecone | |
vector_store = Pinecone.from_existing_index(index_name='mimtssinkqa', embedding=embeddings) | |
def ask_with_memory(vector_store, query, chat_history=[]): | |
from langchain_openai import ChatOpenAI | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate | |
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5) | |
retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3}) | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
system_template = r''' | |
Use the following pieces of context to answer the user's question. The title of the article is Intensifying literacy Instruction: Essential Practices. Do not mention the Header unless asked. | |
---------------- | |
Context: ```{context}``` | |
''' | |
user_template = ''' | |
Question: ```{question}``` | |
Chat History: ```{chat_history}``` | |
''' | |
messages= [ | |
SystemMessagePromptTemplate.from_template(system_template), | |
HumanMessagePromptTemplate.from_template(user_template) | |
] | |
qa_prompt = ChatPromptTemplate.from_messages (messages) | |
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory,chain_type='stuff', combine_docs_chain_kwargs={'prompt': qa_prompt}, verbose=False | |
) | |
result = chain.invoke({'question': query, 'chat_history': st.session_state['history']}) | |
# Append to chat history as a dictionary | |
st.session_state['history'].append((query, result['answer'])) | |
return (result['answer']) | |
# Initialize chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# # STREAMLIT APPLICATION SETUP WITH PASSWORD | |
# Define the correct password | |
# correct_password = "MiBLSi" | |
#Add the image with a specified width | |
image_width = 300 # Set the desired width in pixels | |
st.image('MTSS.ai_Logo.png', width=image_width) | |
st.subheader('Ink QA™ | Dynamic PDFs') | |
# Using Markdown for formatted text | |
st.markdown(""" | |
Resource: **Intensifying Literacy Instruction: Essential Practices** | |
""", unsafe_allow_html=True) | |
with st.sidebar: | |
# Password input field | |
# password = st.text_input("Enter Password:", type="password") | |
st.image('mimtss.png', width=200) | |
st.image('Literacy_Cover.png', width=200) | |
st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf") | |
Audio_Header_text = """ | |
**Tune into Dr. St. Martin's introduction**""" | |
st.markdown(Audio_Header_text) | |
# Path or URL to the audio file | |
audio_file_path = 'Audio_Introduction_Literacy.m4a' | |
# Display the audio player widget | |
st.audio(audio_file_path, format='audio/mp4', start_time=0) | |
# Citation text with Markdown formatting | |
citation_Content_text = """ | |
**Citation** | |
St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education. | |
**Table of Contents** | |
* **Introduction**: pg. 1 | |
* **Intensifying Literacy Instruction: Essential Practices**: pg. 4 | |
* **Purpose**: pg. 4 | |
* **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6 | |
* **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13 | |
* **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16 | |
* **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20 | |
* **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24 | |
* **Motivation and Engagement**: pg. 28 | |
* **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28 | |
* **Summary**: pg. 29 | |
* **Endnotes**: pg. 30 | |
* **Acknowledgment**: pg. 39 | |
""" | |
st.markdown(citation_Content_text) | |
# if password == correct_password: | |
# Define a list of possible placeholder texts | |
placeholders = [ | |
'Example: Summarize the article in 200 words or less', | |
'Example: What are the essential practices?', | |
'Example: I am a teacher, why is this resource important?', | |
'Example: How can this resource support my instruction in reading and writing?', | |
'Example: Does this resource align with the learning progression for developing skilled readers and writers?', | |
'Example: How does this resource address the needs of students scoring below the 20th percentile?', | |
'Example: Are there assessment tools included in this resource to monitor student progress?', | |
'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?', | |
"Example: How can this resource be used to support students' social-emotional development?", | |
"Example: How does this resource align with the district's literacy goals and objectives?", | |
'Example: What research and evidence support the effectiveness of this resource?', | |
'Example: Does this resource provide guidance on implementation fidelity' | |
] | |
# Select a random placeholder from the list | |
if 'placeholder' not in st.session_state: | |
st.session_state.placeholder = random.choice(placeholders) | |
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder) | |
# q = st.text_input(label='Ask a question or make a request ', value='') | |
if q: | |
with st.spinner('Thinking...'): | |
answer = ask_with_memory(vector_store, q, st.session_state.history) | |
# Display the response in a text area | |
st.text_area('Response: ', value=answer, height=400, key="response_text_area") | |
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.') | |
# Prepare chat history text for display | |
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history) | |
# Prepare chat history text for display in reverse order | |
history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history)) | |
# Display chat history | |
st.text_area('Chat History', value=history_text, height=800) | |
# import streamlit as st | |
# import pinecone | |
# from langchain.embeddings.openai import OpenAIEmbeddings | |
# from langchain.vectorstores import Pinecone, Chroma | |
# from langchain.chains import RetrievalQA | |
# from langchain.chat_models import ChatOpenAI | |
# import tiktoken | |
# import random | |
# # Fetch the OpenAI API key from Streamlit secrets | |
# openai_api_key = st.secrets["openai_api_key"] | |
# # Fetch Pinecone API key and environment from Streamlit secrets | |
# pinecone_api_key = st.secrets["pinecone_api_key"] | |
# pinecone_environment = st.secrets["pinecone_environment"] | |
# # Initialize Pinecone | |
# pinecone.init(api_key=pinecone_api_key, environment=pinecone_environment) | |
# # Define the name of the Pinecone index | |
# index_name = 'mi-resource-qa' | |
# # Initialize the OpenAI embeddings object with the hardcoded API key | |
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
# # Define functions | |
# def insert_or_fetch_embeddings(index_name): | |
# if index_name in pinecone.list_indexes(): | |
# vector_store = Pinecone.from_existing_index(index_name, embeddings) | |
# return vector_store | |
# else: | |
# raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.") | |
# # Initialize or fetch Pinecone vector store | |
# vector_store = insert_or_fetch_embeddings(index_name) | |
# # calculate embedding cost using tiktoken | |
# def calculate_embedding_cost(text): | |
# import tiktoken | |
# enc = tiktoken.encoding_for_model('text-embedding-ada-002') | |
# total_tokens = len(enc.encode(text)) | |
# # print(f'Total Tokens: {total_tokens}') | |
# # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}') | |
# return total_tokens, total_tokens / 1000 * 0.0004 | |
# def ask_with_memory(vector_store, query, chat_history=[]): | |
# from langchain.chains import ConversationalRetrievalChain | |
# from langchain.chat_models import ChatOpenAI | |
# llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key) | |
# # The retriever is created with metadata filter directly in search_kwargs | |
# # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}}) | |
# retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}) | |
# chain= ConversationalRetrievalChain.from_llm(llm, retriever) | |
# result = chain({'question': query, 'chat_history': st.session_state['history']}) | |
# # Append to chat history as a dictionary | |
# st.session_state['history'].append((query, result['answer'])) | |
# return (result['answer']) | |
# # Initialize chat history | |
# if 'history' not in st.session_state: | |
# st.session_state['history'] = [] | |
# # # STREAMLIT APPLICATION SETUP WITH PASSWORD | |
# # Define the correct password | |
# # correct_password = "MiBLSi" | |
# #Add the image with a specified width | |
# image_width = 300 # Set the desired width in pixels | |
# st.image('MTSS.ai_Logo.png', width=image_width) | |
# st.subheader('Ink QA™ | Dynamic PDFs') | |
# # Using Markdown for formatted text | |
# st.markdown(""" | |
# Resource: **Intensifying Literacy Instruction: Essential Practices** | |
# """, unsafe_allow_html=True) | |
# with st.sidebar: | |
# # Password input field | |
# # password = st.text_input("Enter Password:", type="password") | |
# st.image('mimtss.png', width=200) | |
# st.image('Literacy_Cover.png', width=200) | |
# st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf") | |
# Audio_Header_text = """ | |
# **Tune into Dr. St. Martin's introduction**""" | |
# st.markdown(Audio_Header_text) | |
# # Path or URL to the audio file | |
# audio_file_path = 'Audio_Introduction_Literacy.m4a' | |
# # Display the audio player widget | |
# st.audio(audio_file_path, format='audio/mp4', start_time=0) | |
# # Citation text with Markdown formatting | |
# citation_Content_text = """ | |
# **Citation** | |
# St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education. | |
# **Table of Contents** | |
# * **Introduction**: pg. 1 | |
# * **Intensifying Literacy Instruction: Essential Practices**: pg. 4 | |
# * **Purpose**: pg. 4 | |
# * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6 | |
# * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13 | |
# * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16 | |
# * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20 | |
# * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24 | |
# * **Motivation and Engagement**: pg. 28 | |
# * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28 | |
# * **Summary**: pg. 29 | |
# * **Endnotes**: pg. 30 | |
# * **Acknowledgment**: pg. 39 | |
# """ | |
# st.markdown(citation_Content_text) | |
# # if password == correct_password: | |
# # Define a list of possible placeholder texts | |
# placeholders = [ | |
# 'Example: Summarize the article in 200 words or less', | |
# 'Example: What are the essential practices?', | |
# 'Example: I am a teacher, why is this resource important?', | |
# 'Example: How can this resource support my instruction in reading and writing?', | |
# 'Example: Does this resource align with the learning progression for developing skilled readers and writers?', | |
# 'Example: How does this resource address the needs of students scoring below the 20th percentile?', | |
# 'Example: Are there assessment tools included in this resource to monitor student progress?', | |
# 'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?', | |
# "Example: How can this resource be used to support students' social-emotional development?", | |
# "Example: How does this resource align with the district's literacy goals and objectives?", | |
# 'Example: What research and evidence support the effectiveness of this resource?', | |
# 'Example: Does this resource provide guidance on implementation fidelity' | |
# ] | |
# # Select a random placeholder from the list | |
# if 'placeholder' not in st.session_state: | |
# st.session_state.placeholder = random.choice(placeholders) | |
# q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder) | |
# # q = st.text_input(label='Ask a question or make a request ', value='') | |
# k = 3 # Set k to 3 | |
# # # Initialize chat history if not present | |
# # if 'history' not in st.session_state: | |
# # st.session_state.history = [] | |
# if q: | |
# with st.spinner('Thinking...'): | |
# answer = ask_with_memory(vector_store, q, st.session_state.history) | |
# # Display the response in a text area | |
# st.text_area('Response: ', value=answer, height=400, key="response_text_area") | |
# st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.') | |
# # # Prepare chat history text for display | |
# # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history) | |
# # Prepare chat history text for display in reverse order | |
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history)) | |
# # Display chat history | |
# st.text_area('Chat History', value=history_text, height=800) | |