File size: 16,183 Bytes
2e4aaee
 
 
 
 
7639be6
 
 
1f1be9c
 
7639be6
1f1be9c
2e4aaee
 
 
1f1be9c
 
 
 
67bfc8c
1f1be9c
3474866
1f1be9c
 
7639be6
1f1be9c
 
7639be6
f3e227d
 
 
 
 
 
 
 
 
 
 
 
 
7639be6
67bfc8c
2e4aaee
d81ac57
2e4aaee
 
 
 
 
 
 
67bfc8c
 
2e4aaee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30b8bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import streamlit as st
import openai
import random





# Fetch the OpenAI API key from Streamlit secrets
openai_api_key = st.secrets["openai_api_key"]

openai_api_key = "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"
# Initialize the OpenAI service with API key
openai.api_key = openai_api_key

# # Fetch Pinecone API key and environment from Streamlit secrets
# PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"]
# # pinecone_api_key = '555c0e70-331d-4b43-aac7-5b3aac5078d6'
# pinecone_environment = st.secrets["pinecone_environment"]

# # AUTHENTICATE/INITIALIZE PINCONE SERVICE
from pinecone import Pinecone
# # pc = Pinecone(api_key=PINECONE_API_KEY)
# pc = Pinecone (api_key= 'YOUR_API_KEY')

PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6"
pc = Pinecone(api_key=PINECONE_API_KEY)

# Hardcode the OpenAI API key
OPENAI_API_KEY = "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" 

# import os
# Retrieve OpenAI API key from environment variables
openai_api_key = os.getenv('OPENAI_API_KEY')
# Initialize the OpenAI service with API key
openai.api_key = openai_api_key

# AUTHENTICATE/INITIALIZE PINCONE SERVICE
from pinecone import Pinecone
pc = Pinecone()




# # Define the name of the Pinecone index
index_name = 'mimtssinkqa'

# Initialize the OpenAI embeddings object 
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)

# LOAD VECTOR STORE FROM EXISTING INDEX
from langchain_community.vectorstores import Pinecone
vector_store = Pinecone.from_existing_index(index_name='mimtssinkqa', embedding=embeddings)

def ask_with_memory(vector_store, query, chat_history=[]):
    from langchain_openai import ChatOpenAI
    from langchain.chains import ConversationalRetrievalChain
    from langchain.memory import ConversationBufferMemory

    from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate

    llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5)
    
    retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
    
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)

    system_template = r'''
    Use the following pieces of context to answer the user's question. The title of the article is Intensifying literacy Instruction: Essential Practices. Do not mention the Header unless asked.
    ----------------
    Context: ```{context}```
    '''

    user_template = '''
    Question: ```{question}```
    Chat History: ```{chat_history}```
    '''

    messages= [
        SystemMessagePromptTemplate.from_template(system_template),
        HumanMessagePromptTemplate.from_template(user_template)
    ]

    qa_prompt = ChatPromptTemplate.from_messages (messages)

    chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory,chain_type='stuff', combine_docs_chain_kwargs={'prompt': qa_prompt}, verbose=False
    )

    result = chain.invoke({'question': query, 'chat_history': st.session_state['history']})
    # Append to chat history as a dictionary
    st.session_state['history'].append((query, result['answer']))
    
    return (result['answer'])

# Initialize chat history
if 'history' not in st.session_state:
    st.session_state['history'] = []
    
# # STREAMLIT APPLICATION SETUP WITH PASSWORD

# Define the correct password
# correct_password = "MiBLSi"

#Add the image with a specified width
image_width = 300  # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)
st.subheader('Ink QA™ | Dynamic PDFs')

# Using Markdown for formatted text
st.markdown("""
Resource: **Intensifying Literacy Instruction: Essential Practices**
""", unsafe_allow_html=True)

with st.sidebar:
    # Password input field
    # password = st.text_input("Enter Password:", type="password")
    
    st.image('mimtss.png', width=200)
    st.image('Literacy_Cover.png', width=200)
    st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
        
    Audio_Header_text = """
    **Tune into Dr. St. Martin's introduction**"""
    st.markdown(Audio_Header_text)
        
    # Path or URL to the audio file
    audio_file_path = 'Audio_Introduction_Literacy.m4a'
    # Display the audio player widget
    st.audio(audio_file_path, format='audio/mp4', start_time=0)
        
    # Citation text with Markdown formatting
    citation_Content_text = """
    **Citation**  
    St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
        
    **Table of Contents**  
    * **Introduction**: pg. 1  
    * **Intensifying Literacy Instruction: Essential Practices**: pg. 4  
    * **Purpose**: pg. 4  
    * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
    * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
    * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
    * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
    * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
    * **Motivation and Engagement**: pg. 28
    * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
    * **Summary**: pg. 29
    * **Endnotes**: pg. 30
    * **Acknowledgment**: pg. 39
    """
    st.markdown(citation_Content_text)

# if password == correct_password:
# Define a list of possible placeholder texts
placeholders = [
    'Example: Summarize the article in 200 words or less',
    'Example: What are the essential practices?',
    'Example: I am a teacher, why is this resource important?',
    'Example: How can this resource support my instruction in reading and writing?',
    'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
    'Example: How does this resource address the needs of students scoring below the 20th percentile?',
    'Example: Are there assessment tools included in this resource to monitor student progress?',
    'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
    "Example: How can this resource be used to support students' social-emotional development?",
    "Example: How does this resource align with the district's literacy goals and objectives?",
    'Example: What research and evidence support the effectiveness of this resource?',
    'Example: Does this resource provide guidance on implementation fidelity'
]

# Select a random placeholder from the list
if 'placeholder' not in st.session_state:
    st.session_state.placeholder = random.choice(placeholders)
    
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# q = st.text_input(label='Ask a question or make a request ', value='')
    
if q:
    with st.spinner('Thinking...'):
        answer = ask_with_memory(vector_store, q, st.session_state.history)
    
    # Display the response in a text area
    st.text_area('Response: ', value=answer, height=400, key="response_text_area")
    
    st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')

    # Prepare chat history text for display
    # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
    # Prepare chat history text for display in reverse order
    history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))

    # Display chat history
    st.text_area('Chat History', value=history_text, height=800)





# import streamlit as st
# import pinecone
# from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.vectorstores import Pinecone, Chroma
# from langchain.chains import RetrievalQA
# from langchain.chat_models import ChatOpenAI
# import tiktoken
# import random

# # Fetch the OpenAI API key from Streamlit secrets
# openai_api_key = st.secrets["openai_api_key"]

# # Fetch Pinecone API key and environment from Streamlit secrets
# pinecone_api_key = st.secrets["pinecone_api_key"]
# pinecone_environment = st.secrets["pinecone_environment"]

# # Initialize Pinecone
# pinecone.init(api_key=pinecone_api_key, environment=pinecone_environment)

# # Define the name of the Pinecone index
# index_name = 'mi-resource-qa'

# # Initialize the OpenAI embeddings object with the hardcoded API key
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)

# # Define functions
# def insert_or_fetch_embeddings(index_name):
#     if index_name in pinecone.list_indexes():
#         vector_store = Pinecone.from_existing_index(index_name, embeddings)
#         return vector_store
#     else:
#         raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.")

# # Initialize or fetch Pinecone vector store
# vector_store = insert_or_fetch_embeddings(index_name)

# # calculate embedding cost using tiktoken
# def calculate_embedding_cost(text):
#     import tiktoken
#     enc = tiktoken.encoding_for_model('text-embedding-ada-002')
#     total_tokens = len(enc.encode(text))
#     # print(f'Total Tokens: {total_tokens}')
#     # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
#     return total_tokens, total_tokens / 1000 * 0.0004


# def ask_with_memory(vector_store, query, chat_history=[]):
#     from langchain.chains import ConversationalRetrievalChain
#     from langchain.chat_models import ChatOpenAI
    
#     llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key)
    
#     # The retriever is created with metadata filter directly in search_kwargs
#     # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}})
#     retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}})
    
#     chain= ConversationalRetrievalChain.from_llm(llm, retriever)
#     result = chain({'question': query, 'chat_history': st.session_state['history']})
#     # Append to chat history as a dictionary
#     st.session_state['history'].append((query, result['answer']))
    
#     return (result['answer'])

# # Initialize chat history
# if 'history' not in st.session_state:
#     st.session_state['history'] = []
    
# # # STREAMLIT APPLICATION SETUP WITH PASSWORD

# # Define the correct password
# # correct_password = "MiBLSi"

# #Add the image with a specified width
# image_width = 300  # Set the desired width in pixels
# st.image('MTSS.ai_Logo.png', width=image_width)
# st.subheader('Ink QA™ | Dynamic PDFs')

# # Using Markdown for formatted text
# st.markdown("""
# Resource: **Intensifying Literacy Instruction: Essential Practices**
# """, unsafe_allow_html=True)

# with st.sidebar:
#     # Password input field
#     # password = st.text_input("Enter Password:", type="password")
    
#     st.image('mimtss.png', width=200)
#     st.image('Literacy_Cover.png', width=200)
#     st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
        
#     Audio_Header_text = """
#     **Tune into Dr. St. Martin's introduction**"""
#     st.markdown(Audio_Header_text)
        
#     # Path or URL to the audio file
#     audio_file_path = 'Audio_Introduction_Literacy.m4a'
#     # Display the audio player widget
#     st.audio(audio_file_path, format='audio/mp4', start_time=0)
        
#     # Citation text with Markdown formatting
#     citation_Content_text = """
#     **Citation**  
#     St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
        
#     **Table of Contents**  
#     * **Introduction**: pg. 1  
#     * **Intensifying Literacy Instruction: Essential Practices**: pg. 4  
#     * **Purpose**: pg. 4  
#     * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
#     * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
#     * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
#     * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
#     * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
#     * **Motivation and Engagement**: pg. 28
#     * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
#     * **Summary**: pg. 29
#     * **Endnotes**: pg. 30
#     * **Acknowledgment**: pg. 39
#     """
#     st.markdown(citation_Content_text)

# # if password == correct_password:
# # Define a list of possible placeholder texts
# placeholders = [
#     'Example: Summarize the article in 200 words or less',
#     'Example: What are the essential practices?',
#     'Example: I am a teacher, why is this resource important?',
#     'Example: How can this resource support my instruction in reading and writing?',
#     'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
#     'Example: How does this resource address the needs of students scoring below the 20th percentile?',
#     'Example: Are there assessment tools included in this resource to monitor student progress?',
#     'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
#     "Example: How can this resource be used to support students' social-emotional development?",
#     "Example: How does this resource align with the district's literacy goals and objectives?",
#     'Example: What research and evidence support the effectiveness of this resource?',
#     'Example: Does this resource provide guidance on implementation fidelity'
# ]

# # Select a random placeholder from the list
# if 'placeholder' not in st.session_state:
#     st.session_state.placeholder = random.choice(placeholders)
    
# q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# # q = st.text_input(label='Ask a question or make a request ', value='')

# k = 3  # Set k to 3

# # # Initialize chat history if not present
# # if 'history' not in st.session_state:
# #     st.session_state.history = []
    
# if q:
#     with st.spinner('Thinking...'):
#         answer = ask_with_memory(vector_store, q, st.session_state.history)
    
#     # Display the response in a text area
#     st.text_area('Response: ', value=answer, height=400, key="response_text_area")
    
#     st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')

#     # # Prepare chat history text for display
#     # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
#     # Prepare chat history text for display in reverse order
#     history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))

#     # Display chat history
#     st.text_area('Chat History', value=history_text, height=800)