Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
4 |
-
from langchain.vectorstores import Pinecone, Chroma
|
5 |
-
from langchain.chains import RetrievalQA
|
6 |
-
from langchain.chat_models import ChatOpenAI
|
7 |
-
import tiktoken
|
8 |
import random
|
9 |
|
10 |
# Fetch the OpenAI API key from Streamlit secrets
|
11 |
openai_api_key = st.secrets["openai_api_key"]
|
12 |
|
|
|
|
|
|
|
13 |
# Fetch Pinecone API key and environment from Streamlit secrets
|
14 |
pinecone_api_key = st.secrets["pinecone_api_key"]
|
15 |
pinecone_environment = st.secrets["pinecone_environment"]
|
16 |
|
17 |
-
#
|
18 |
-
pinecone
|
|
|
19 |
|
20 |
# Define the name of the Pinecone index
|
21 |
-
index_name = '
|
22 |
-
|
23 |
-
# Initialize the OpenAI embeddings object with the hardcoded API key
|
24 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
vector_store = Pinecone.from_existing_index(index_name, embeddings)
|
30 |
-
return vector_store
|
31 |
-
else:
|
32 |
-
raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.")
|
33 |
-
|
34 |
-
# Initialize or fetch Pinecone vector store
|
35 |
-
vector_store = insert_or_fetch_embeddings(index_name)
|
36 |
-
|
37 |
-
# calculate embedding cost using tiktoken
|
38 |
-
def calculate_embedding_cost(text):
|
39 |
-
import tiktoken
|
40 |
-
enc = tiktoken.encoding_for_model('text-embedding-ada-002')
|
41 |
-
total_tokens = len(enc.encode(text))
|
42 |
-
# print(f'Total Tokens: {total_tokens}')
|
43 |
-
# print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
|
44 |
-
return total_tokens, total_tokens / 1000 * 0.0004
|
45 |
|
|
|
|
|
|
|
46 |
|
47 |
def ask_with_memory(vector_store, query, chat_history=[]):
|
|
|
48 |
from langchain.chains import ConversationalRetrievalChain
|
49 |
-
from langchain.
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
# retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}})
|
55 |
-
retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}})
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Append to chat history as a dictionary
|
60 |
st.session_state['history'].append((query, result['answer']))
|
61 |
|
@@ -142,12 +320,6 @@ if 'placeholder' not in st.session_state:
|
|
142 |
|
143 |
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
|
144 |
# q = st.text_input(label='Ask a question or make a request ', value='')
|
145 |
-
|
146 |
-
k = 3 # Set k to 3
|
147 |
-
|
148 |
-
# # Initialize chat history if not present
|
149 |
-
# if 'history' not in st.session_state:
|
150 |
-
# st.session_state.history = []
|
151 |
|
152 |
if q:
|
153 |
with st.spinner('Thinking...'):
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pinecone
|
3 |
+
# from langchain.embeddings.openai import OpenAIEmbeddings
|
4 |
+
# from langchain.vectorstores import Pinecone, Chroma
|
5 |
+
# from langchain.chains import RetrievalQA
|
6 |
+
# from langchain.chat_models import ChatOpenAI
|
7 |
+
# import tiktoken
|
8 |
+
# import random
|
9 |
+
|
10 |
+
# # Fetch the OpenAI API key from Streamlit secrets
|
11 |
+
# openai_api_key = st.secrets["openai_api_key"]
|
12 |
+
|
13 |
+
# # Fetch Pinecone API key and environment from Streamlit secrets
|
14 |
+
# pinecone_api_key = st.secrets["pinecone_api_key"]
|
15 |
+
# pinecone_environment = st.secrets["pinecone_environment"]
|
16 |
+
|
17 |
+
# # Initialize Pinecone
|
18 |
+
# pinecone.init(api_key=pinecone_api_key, environment=pinecone_environment)
|
19 |
+
|
20 |
+
# # Define the name of the Pinecone index
|
21 |
+
# index_name = 'mi-resource-qa'
|
22 |
+
|
23 |
+
# # Initialize the OpenAI embeddings object with the hardcoded API key
|
24 |
+
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
25 |
+
|
26 |
+
# # Define functions
|
27 |
+
# def insert_or_fetch_embeddings(index_name):
|
28 |
+
# if index_name in pinecone.list_indexes():
|
29 |
+
# vector_store = Pinecone.from_existing_index(index_name, embeddings)
|
30 |
+
# return vector_store
|
31 |
+
# else:
|
32 |
+
# raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.")
|
33 |
+
|
34 |
+
# # Initialize or fetch Pinecone vector store
|
35 |
+
# vector_store = insert_or_fetch_embeddings(index_name)
|
36 |
+
|
37 |
+
# # calculate embedding cost using tiktoken
|
38 |
+
# def calculate_embedding_cost(text):
|
39 |
+
# import tiktoken
|
40 |
+
# enc = tiktoken.encoding_for_model('text-embedding-ada-002')
|
41 |
+
# total_tokens = len(enc.encode(text))
|
42 |
+
# # print(f'Total Tokens: {total_tokens}')
|
43 |
+
# # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
|
44 |
+
# return total_tokens, total_tokens / 1000 * 0.0004
|
45 |
+
|
46 |
+
|
47 |
+
# def ask_with_memory(vector_store, query, chat_history=[]):
|
48 |
+
# from langchain.chains import ConversationalRetrievalChain
|
49 |
+
# from langchain.chat_models import ChatOpenAI
|
50 |
+
|
51 |
+
# llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key)
|
52 |
+
|
53 |
+
# # The retriever is created with metadata filter directly in search_kwargs
|
54 |
+
# # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}})
|
55 |
+
# retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}})
|
56 |
+
|
57 |
+
# chain= ConversationalRetrievalChain.from_llm(llm, retriever)
|
58 |
+
# result = chain({'question': query, 'chat_history': st.session_state['history']})
|
59 |
+
# # Append to chat history as a dictionary
|
60 |
+
# st.session_state['history'].append((query, result['answer']))
|
61 |
+
|
62 |
+
# return (result['answer'])
|
63 |
+
|
64 |
+
# # Initialize chat history
|
65 |
+
# if 'history' not in st.session_state:
|
66 |
+
# st.session_state['history'] = []
|
67 |
+
|
68 |
+
# # # STREAMLIT APPLICATION SETUP WITH PASSWORD
|
69 |
+
|
70 |
+
# # Define the correct password
|
71 |
+
# # correct_password = "MiBLSi"
|
72 |
+
|
73 |
+
# #Add the image with a specified width
|
74 |
+
# image_width = 300 # Set the desired width in pixels
|
75 |
+
# st.image('MTSS.ai_Logo.png', width=image_width)
|
76 |
+
# st.subheader('Ink QA™ | Dynamic PDFs')
|
77 |
+
|
78 |
+
# # Using Markdown for formatted text
|
79 |
+
# st.markdown("""
|
80 |
+
# Resource: **Intensifying Literacy Instruction: Essential Practices**
|
81 |
+
# """, unsafe_allow_html=True)
|
82 |
+
|
83 |
+
# with st.sidebar:
|
84 |
+
# # Password input field
|
85 |
+
# # password = st.text_input("Enter Password:", type="password")
|
86 |
+
|
87 |
+
# st.image('mimtss.png', width=200)
|
88 |
+
# st.image('Literacy_Cover.png', width=200)
|
89 |
+
# st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
|
90 |
+
|
91 |
+
# Audio_Header_text = """
|
92 |
+
# **Tune into Dr. St. Martin's introduction**"""
|
93 |
+
# st.markdown(Audio_Header_text)
|
94 |
+
|
95 |
+
# # Path or URL to the audio file
|
96 |
+
# audio_file_path = 'Audio_Introduction_Literacy.m4a'
|
97 |
+
# # Display the audio player widget
|
98 |
+
# st.audio(audio_file_path, format='audio/mp4', start_time=0)
|
99 |
+
|
100 |
+
# # Citation text with Markdown formatting
|
101 |
+
# citation_Content_text = """
|
102 |
+
# **Citation**
|
103 |
+
# St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
|
104 |
+
|
105 |
+
# **Table of Contents**
|
106 |
+
# * **Introduction**: pg. 1
|
107 |
+
# * **Intensifying Literacy Instruction: Essential Practices**: pg. 4
|
108 |
+
# * **Purpose**: pg. 4
|
109 |
+
# * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
|
110 |
+
# * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
|
111 |
+
# * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
|
112 |
+
# * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
|
113 |
+
# * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
|
114 |
+
# * **Motivation and Engagement**: pg. 28
|
115 |
+
# * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
|
116 |
+
# * **Summary**: pg. 29
|
117 |
+
# * **Endnotes**: pg. 30
|
118 |
+
# * **Acknowledgment**: pg. 39
|
119 |
+
# """
|
120 |
+
# st.markdown(citation_Content_text)
|
121 |
+
|
122 |
+
# # if password == correct_password:
|
123 |
+
# # Define a list of possible placeholder texts
|
124 |
+
# placeholders = [
|
125 |
+
# 'Example: Summarize the article in 200 words or less',
|
126 |
+
# 'Example: What are the essential practices?',
|
127 |
+
# 'Example: I am a teacher, why is this resource important?',
|
128 |
+
# 'Example: How can this resource support my instruction in reading and writing?',
|
129 |
+
# 'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
|
130 |
+
# 'Example: How does this resource address the needs of students scoring below the 20th percentile?',
|
131 |
+
# 'Example: Are there assessment tools included in this resource to monitor student progress?',
|
132 |
+
# 'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
|
133 |
+
# "Example: How can this resource be used to support students' social-emotional development?",
|
134 |
+
# "Example: How does this resource align with the district's literacy goals and objectives?",
|
135 |
+
# 'Example: What research and evidence support the effectiveness of this resource?',
|
136 |
+
# 'Example: Does this resource provide guidance on implementation fidelity'
|
137 |
+
# ]
|
138 |
+
|
139 |
+
# # Select a random placeholder from the list
|
140 |
+
# if 'placeholder' not in st.session_state:
|
141 |
+
# st.session_state.placeholder = random.choice(placeholders)
|
142 |
+
|
143 |
+
# q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
|
144 |
+
# # q = st.text_input(label='Ask a question or make a request ', value='')
|
145 |
+
|
146 |
+
# k = 3 # Set k to 3
|
147 |
+
|
148 |
+
# # # Initialize chat history if not present
|
149 |
+
# # if 'history' not in st.session_state:
|
150 |
+
# # st.session_state.history = []
|
151 |
+
|
152 |
+
# if q:
|
153 |
+
# with st.spinner('Thinking...'):
|
154 |
+
# answer = ask_with_memory(vector_store, q, st.session_state.history)
|
155 |
+
|
156 |
+
# # Display the response in a text area
|
157 |
+
# st.text_area('Response: ', value=answer, height=400, key="response_text_area")
|
158 |
+
|
159 |
+
# st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
|
160 |
+
|
161 |
+
# # # Prepare chat history text for display
|
162 |
+
# # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
|
163 |
+
# # Prepare chat history text for display in reverse order
|
164 |
+
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))
|
165 |
+
|
166 |
+
# # Display chat history
|
167 |
+
# st.text_area('Chat History', value=history_text, height=800)
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
import streamlit as st
|
174 |
+
import openai
|
|
|
|
|
|
|
|
|
|
|
175 |
import random
|
176 |
|
177 |
# Fetch the OpenAI API key from Streamlit secrets
|
178 |
openai_api_key = st.secrets["openai_api_key"]
|
179 |
|
180 |
+
# Initialize the OpenAI service with API key
|
181 |
+
openai.api_key = openai_api_key
|
182 |
+
|
183 |
# Fetch Pinecone API key and environment from Streamlit secrets
|
184 |
pinecone_api_key = st.secrets["pinecone_api_key"]
|
185 |
pinecone_environment = st.secrets["pinecone_environment"]
|
186 |
|
187 |
+
# AUTHENTICATE/INITIALIZE PINCONE SERVICE
|
188 |
+
from pinecone import Pinecone
|
189 |
+
pc = Pinecone()
|
190 |
|
191 |
# Define the name of the Pinecone index
|
192 |
+
index_name = 'mimtssinkqa'
|
|
|
|
|
|
|
193 |
|
194 |
+
# Initialize the OpenAI embeddings object
|
195 |
+
from langchain_openai import OpenAIEmbeddings
|
196 |
+
embeddings = OpenAIEmbeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
# LOAD VECTOR STORE FROM EXISTING INDEX
|
199 |
+
from langchain_community.vectorstores import Pinecone
|
200 |
+
vector_store = Pinecone.from_existing_index(index_name='mimtssinkqa', embedding=embeddings)
|
201 |
|
202 |
def ask_with_memory(vector_store, query, chat_history=[]):
|
203 |
+
from langchain_openai import ChatOpenAI
|
204 |
from langchain.chains import ConversationalRetrievalChain
|
205 |
+
from langchain.memory import ConversationBufferMemory
|
206 |
+
|
207 |
+
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
208 |
+
|
209 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5)
|
210 |
|
211 |
+
retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
|
|
|
|
|
212 |
|
213 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
214 |
+
|
215 |
+
system_template = r'''
|
216 |
+
Use the following pieces of context to answer the user's question. The title of the article is Intensifying literacy Instruction: Essential Practices. Do not mention the Header unless asked.
|
217 |
+
----------------
|
218 |
+
Context: ```{context}```
|
219 |
+
'''
|
220 |
+
|
221 |
+
user_template = '''
|
222 |
+
Question: ```{question}```
|
223 |
+
Chat History: ```{chat_history}```
|
224 |
+
'''
|
225 |
+
|
226 |
+
messages= [
|
227 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
228 |
+
HumanMessagePromptTemplate.from_template(user_template)
|
229 |
+
]
|
230 |
+
|
231 |
+
qa_prompt = ChatPromptTemplate.from_messages (messages)
|
232 |
+
|
233 |
+
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory,chain_type='stuff', combine_docs_chain_kwargs={'prompt': qa_prompt}, verbose=False
|
234 |
+
)
|
235 |
+
|
236 |
+
result = chain.invoke({'question': query, 'chat_history': st.session_state['history']})
|
237 |
# Append to chat history as a dictionary
|
238 |
st.session_state['history'].append((query, result['answer']))
|
239 |
|
|
|
320 |
|
321 |
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
|
322 |
# q = st.text_input(label='Ask a question or make a request ', value='')
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
if q:
|
325 |
with st.spinner('Thinking...'):
|