# import pandas as pd | |
# import os | |
# import re | |
# from huggingface_hub import InferenceClient | |
# # from graphviz import Digraph | |
# class DataProcessor: | |
# INTERVENTION_COLUMN = 'Did the intervention happen today?' | |
# ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)' | |
# PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)' | |
# NOT_ENGAGED_STR = 'Not Engaged (less than 50%)' | |
# def __init__(self, student_metrics_df=None): | |
# self.hf_api_key = os.getenv('HF_API_KEY') | |
# if not self.hf_api_key: | |
# raise ValueError("HF_API_KEY not set in environment variables") | |
# self.client = InferenceClient(api_key=self.hf_api_key) | |
# self.student_metrics_df = student_metrics_df | |
# def read_excel(self, uploaded_file): | |
# return pd.read_excel(uploaded_file) | |
# def format_session_data(self, df): | |
# # Look for "Date of Session" or "Date" column | |
# date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) | |
# if date_column: | |
# df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date | |
# else: | |
# print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.") | |
# df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p') | |
# df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p') | |
# df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p') | |
# return df | |
# def safe_convert_to_time(self, series, format_str='%I:%M %p'): | |
# try: | |
# converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce') | |
# if format_str: | |
# return converted.dt.strftime(format_str) | |
# return converted | |
# except Exception as e: | |
# print(f"Error converting series to time: {e}") | |
# return series | |
# def safe_convert_to_datetime(self, series, format_str=None): | |
# try: | |
# converted = pd.to_datetime(series, errors='coerce') | |
# if format_str: | |
# return converted.dt.strftime(format_str) | |
# return converted | |
# except Exception as e: | |
# print(f"Error converting series to datetime: {e}") | |
# return series | |
# def replace_student_names_with_initials(self, df): | |
# updated_columns = [] | |
# for col in df.columns: | |
# if col.startswith('Student Attendance'): | |
# match = re.match(r'Student Attendance \[(.+?)\]', col) | |
# if match: | |
# name = match.group(1) | |
# initials = ''.join([part[0] for part in name.split()]) | |
# updated_columns.append(f'Student Attendance [{initials}]') | |
# else: | |
# updated_columns.append(col) | |
# else: | |
# updated_columns.append(col) | |
# df.columns = updated_columns | |
# return df | |
# def compute_intervention_statistics(self, df): | |
# total_days = len(df) | |
# sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum() | |
# intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0 | |
# return pd.DataFrame({ | |
# 'Intervention Dosage (%)': [round(intervention_frequency, 0)], | |
# 'Intervention Sessions Held': [sessions_held], | |
# 'Intervention Sessions Not Held': [total_days - sessions_held], | |
# 'Total Number of Days Available': [total_days] | |
# }) | |
# def compute_student_metrics(self, df): | |
# intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes'] | |
# intervention_sessions_held = len(intervention_df) | |
# student_columns = [col for col in df.columns if col.startswith('Student Attendance')] | |
# student_metrics = {} | |
# for col in student_columns: | |
# student_name = col.replace('Student Attendance [', '').replace(']', '').strip() | |
# student_data = intervention_df[[col]].copy() | |
# student_data[col] = student_data[col].fillna('Absent') | |
# attendance_values = student_data[col].apply(lambda x: 1 if x in [ | |
# self.ENGAGED_STR, | |
# self.PARTIALLY_ENGAGED_STR, | |
# self.NOT_ENGAGED_STR | |
# ] else 0) | |
# sessions_attended = attendance_values.sum() | |
# attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0 | |
# attendance_pct = round(attendance_pct) | |
# engagement_counts = { | |
# 'Engaged': 0, | |
# 'Partially Engaged': 0, | |
# 'Not Engaged': 0, | |
# 'Absent': 0 | |
# } | |
# for x in student_data[col]: | |
# if x == self.ENGAGED_STR: | |
# engagement_counts['Engaged'] += 1 | |
# elif x == self.PARTIALLY_ENGAGED_STR: | |
# engagement_counts['Partially Engaged'] += 1 | |
# elif x == self.NOT_ENGAGED_STR: | |
# engagement_counts['Not Engaged'] += 1 | |
# else: | |
# engagement_counts['Absent'] += 1 # Count as Absent if not engaged | |
# # Calculate percentages for engagement states | |
# total_sessions = sum(engagement_counts.values()) | |
# # Engagement (%) | |
# engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0 | |
# engagement_pct = round(engagement_pct) | |
# engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0 | |
# engaged_pct = round(engaged_pct) | |
# partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0 | |
# partially_engaged_pct = round(partially_engaged_pct) | |
# not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0 | |
# not_engaged_pct = round(not_engaged_pct) | |
# absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0 | |
# absent_pct = round(absent_pct) | |
# # Determine if the student attended ≥ 90% of sessions | |
# attended_90 = "Yes" if attendance_pct >= 90 else "No" | |
# # Determine if the student was engaged ≥ 80% of the time | |
# engaged_80 = "Yes" if engaged_pct >= 80 else "No" | |
# # Store metrics in the required order | |
# student_metrics[student_name] = { | |
# 'Attended ≥ 90%': attended_90, | |
# 'Engagement ≥ 80%': engaged_80, | |
# 'Attendance (%)': attendance_pct, | |
# # 'Attendance #': sessions_attended, | |
# 'Engagement (%)': engagement_pct, | |
# 'Engaged (%)': engaged_pct, | |
# 'Partially Engaged (%)': partially_engaged_pct, | |
# 'Not Engaged (%)': not_engaged_pct, | |
# 'Absent (%)': absent_pct | |
# } | |
# # Create a DataFrame from student_metrics | |
# student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index() | |
# student_metrics_df.rename(columns={'index': 'Student'}, inplace=True) | |
# return student_metrics_df | |
# def compute_average_metrics(self, student_metrics_df): | |
# # Calculate the attendance and engagement average percentages across students | |
# attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage | |
# engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Calculate the average engagement percentage | |
# # Round the averages to make them whole numbers | |
# attendance_avg_stats = round(attendance_avg_stats) | |
# engagement_avg_stats = round(engagement_avg_stats) | |
# return attendance_avg_stats, engagement_avg_stats | |
# def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80): | |
# if row["Attended ≥ 90%"] == "No": | |
# return "Address Attendance" | |
# elif row["Engagement ≥ 80%"] == "No": | |
# return "Address Engagement" | |
# return "Consider barriers, fidelity, and progress monitoring" | |
import re | |
import pandas as pd | |
import os | |
from huggingface_hub import InferenceClient | |
class DataProcessor: | |
INTERVENTION_COLUMN_OPTIONS = [ | |
'Did the intervention happen today?', | |
'Did the Intervention Take Place Today?' | |
] | |
ENGAGED_STR = 'Engaged' | |
PARTIALLY_ENGAGED_STR = 'Partially Engaged' | |
NOT_ENGAGED_STR = 'Not Engaged' | |
def __init__(self, student_metrics_df=None): | |
self.hf_api_key = os.getenv('HF_API_KEY') | |
if not self.hf_api_key: | |
raise ValueError("HF_API_KEY not set in environment variables") | |
self.client = InferenceClient(api_key=self.hf_api_key) | |
self.student_metrics_df = student_metrics_df | |
self.intervention_column = None # Will be set when processing data | |
def read_excel(self, uploaded_file): | |
return pd.read_excel(uploaded_file) | |
def format_session_data(self, df): | |
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) | |
if date_column: | |
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date | |
else: | |
print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.") | |
df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p') | |
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p') | |
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p') | |
return df | |
def safe_convert_to_time(self, series, format_str='%I:%M %p'): | |
try: | |
converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce') | |
if format_str: | |
return converted.dt.strftime(format_str) | |
return converted | |
except Exception as e: | |
print(f"Error converting series to time: {e}") | |
return series | |
def safe_convert_to_datetime(self, series, format_str=None): | |
try: | |
converted = pd.to_datetime(series, errors='coerce') | |
if format_str: | |
return converted.dt.strftime(format_str) | |
return converted | |
except Exception as e: | |
print(f"Error converting series to datetime: {e}") | |
return series | |
def replace_student_names_with_initials(self, df): | |
updated_columns = [] | |
for col in df.columns: | |
if col.startswith('Student Attendance'): | |
match = re.match(r'Student Attendance \[(.+?)\]', col) | |
if match: | |
name = match.group(1) | |
initials = ''.join([part[0] for part in name.split()]) | |
updated_columns.append(f'Student Attendance [{initials}]') | |
else: | |
updated_columns.append(col) | |
else: | |
updated_columns.append(col) | |
df.columns = updated_columns | |
return df | |
def find_intervention_column(self, df): | |
for column in self.INTERVENTION_COLUMN_OPTIONS: | |
if column in df.columns: | |
self.intervention_column = column | |
return column | |
raise ValueError("No intervention column found in the dataframe.") | |
def compute_intervention_statistics(self, df): | |
intervention_column = self.find_intervention_column(df) | |
total_days = len(df) | |
sessions_held = df[intervention_column].str.strip().str.lower().eq('yes').sum() | |
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0 | |
return pd.DataFrame({ | |
'Intervention Dosage (%)': [round(intervention_frequency, 0)], | |
'Intervention Sessions Held': [sessions_held], | |
'Intervention Sessions Not Held': [total_days - sessions_held], | |
'Total Number of Days Available': [total_days] | |
}) | |
def classify_engagement(self, engagement_str): | |
engagement_str = str(engagement_str).lower() | |
if engagement_str.startswith(self.ENGAGED_STR.lower()): | |
return self.ENGAGED_STR | |
elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()): | |
return self.PARTIALLY_ENGAGED_STR | |
elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()): | |
return self.NOT_ENGAGED_STR | |
else: | |
return 'Unknown' | |
def compute_student_metrics(self, df): | |
intervention_column = self.find_intervention_column(df) | |
intervention_df = df[df[intervention_column].str.strip().str.lower() == 'yes'] | |
intervention_sessions_held = len(intervention_df) | |
student_columns = [col for col in df.columns if col.startswith('Student Attendance')] | |
student_metrics = {} | |
for col in student_columns: | |
student_name = col.replace('Student Attendance [', '').replace(']', '').strip() | |
student_data = intervention_df[[col]].copy() | |
student_data[col] = student_data[col].fillna('Absent') | |
attendance_values = student_data[col].apply(lambda x: 1 if self.classify_engagement(x) in [ | |
self.ENGAGED_STR, | |
self.PARTIALLY_ENGAGED_STR, | |
self.NOT_ENGAGED_STR | |
] else 0) | |
sessions_attended = attendance_values.sum() | |
attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0 | |
attendance_pct = round(attendance_pct) | |
engagement_counts = { | |
self.ENGAGED_STR: 0, | |
self.PARTIALLY_ENGAGED_STR: 0, | |
self.NOT_ENGAGED_STR: 0, | |
'Absent': 0 | |
} | |
for x in student_data[col]: | |
classified_engagement = self.classify_engagement(x) | |
if classified_engagement in engagement_counts: | |
engagement_counts[classified_engagement] += 1 | |
else: | |
engagement_counts['Absent'] += 1 # Count as Absent if not engaged | |
total_sessions = sum(engagement_counts.values()) | |
engagement_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0 | |
engagement_pct = round(engagement_pct) | |
engaged_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0 | |
engaged_pct = round(engaged_pct) | |
partially_engaged_pct = (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0 | |
partially_engaged_pct = round(partially_engaged_pct) | |
not_engaged_pct = (engagement_counts[self.NOT_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0 | |
not_engaged_pct = round(not_engaged_pct) | |
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0 | |
absent_pct = round(absent_pct) | |
# Determine if the student attended ≥ 90% of sessions | |
attended_90 = "Yes" if attendance_pct >= 90 else "No" | |
# Determine if the student was engaged ≥ 80% of the time | |
engaged_80 = "Yes" if engaged_pct >= 80 else "No" | |
# Store metrics in the required order | |
student_metrics[student_name] = { | |
'Attended ≥ 90%': attended_90, | |
'Engagement ≥ 80%': engaged_80, | |
'Attendance (%)': attendance_pct, | |
'Engagement (%)': engagement_pct, | |
f'{self.ENGAGED_STR} (%)': engaged_pct, | |
f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct, | |
f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct, | |
'Absent (%)': absent_pct | |
} | |
# Create a DataFrame from student_metrics | |
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index() | |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True) | |
return student_metrics_df | |
def compute_average_metrics(self, student_metrics_df): | |
# Calculate the attendance and engagement average percentages across students | |
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage | |
engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Calculate the average engagement percentage | |
# Round the averages to make them whole numbers | |
attendance_avg_stats = round(attendance_avg_stats) | |
engagement_avg_stats = round(engagement_avg_stats) | |
return attendance_avg_stats, engagement_avg_stats | |
def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80): | |
if row["Attended ≥ 90%"] == "No": | |
return "Address Attendance" | |
elif row["Engagement ≥ 80%"] == "No": | |
return "Address Engagement" | |
return "Consider barriers, fidelity, and progress monitoring" |