File size: 17,651 Bytes
fc8abe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823b52c
 
 
 
 
907c533
 
 
 
fc8abe1
 
 
823b52c
c60d2d1
823b52c
 
 
 
c60d2d1
907c533
fc8abe1
823b52c
 
 
 
14e49ed
 
 
 
 
 
823b52c
 
 
 
 
 
 
91d4500
 
 
 
823b52c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c60d2d1
823b52c
 
 
 
 
 
 
 
907c533
 
 
 
 
 
 
823b52c
907c533
823b52c
907c533
823b52c
c60d2d1
a4da1a9
823b52c
c60d2d1
823b52c
c60d2d1
823b52c
fc8abe1
bab30c5
fc8abe1
 
 
 
 
 
 
 
 
bab30c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215d8b5
bab30c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a37c7
 
 
 
 
 
 
 
 
 
b7e5770
c60d2d1
 
 
 
 
d736e44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# import pandas as pd
# import os
# import re
# from huggingface_hub import InferenceClient
# # from graphviz import Digraph

# class DataProcessor:
#     INTERVENTION_COLUMN = 'Did the intervention happen today?'
#     ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
#     PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
#     NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'

#     def __init__(self, student_metrics_df=None):
#         self.hf_api_key = os.getenv('HF_API_KEY')
#         if not self.hf_api_key:
#             raise ValueError("HF_API_KEY not set in environment variables")
#         self.client = InferenceClient(api_key=self.hf_api_key)
#         self.student_metrics_df = student_metrics_df

#     def read_excel(self, uploaded_file):
#         return pd.read_excel(uploaded_file)

#     def format_session_data(self, df):
#         # Look for "Date of Session" or "Date" column
#         date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
#         if date_column:
#             df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
#         else:
#             print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.")
        
#         df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
#         df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
#         df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
#         return df

#     def safe_convert_to_time(self, series, format_str='%I:%M %p'):
#         try:
#             converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
#             if format_str:
#                 return converted.dt.strftime(format_str)
#             return converted
#         except Exception as e:
#             print(f"Error converting series to time: {e}")
#             return series

#     def safe_convert_to_datetime(self, series, format_str=None):
#         try:
#             converted = pd.to_datetime(series, errors='coerce')
#             if format_str:
#                 return converted.dt.strftime(format_str)
#             return converted
#         except Exception as e:
#             print(f"Error converting series to datetime: {e}")
#             return series

#     def replace_student_names_with_initials(self, df):
#         updated_columns = []
#         for col in df.columns:
#             if col.startswith('Student Attendance'):
#                 match = re.match(r'Student Attendance \[(.+?)\]', col)
#                 if match:
#                     name = match.group(1)
#                     initials = ''.join([part[0] for part in name.split()])
#                     updated_columns.append(f'Student Attendance [{initials}]')
#                 else:
#                     updated_columns.append(col)
#             else:
#                 updated_columns.append(col)
#         df.columns = updated_columns
#         return df

#     def compute_intervention_statistics(self, df):
#         total_days = len(df)
#         sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
#         intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
#         return pd.DataFrame({
#             'Intervention Dosage (%)': [round(intervention_frequency, 0)],
#             'Intervention Sessions Held': [sessions_held],
#             'Intervention Sessions Not Held': [total_days - sessions_held],
#             'Total Number of Days Available': [total_days]
#         })

#     def compute_student_metrics(self, df):
#         intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
#         intervention_sessions_held = len(intervention_df)
#         student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
    
#         student_metrics = {}
#         for col in student_columns:
#             student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
#             student_data = intervention_df[[col]].copy()
#             student_data[col] = student_data[col].fillna('Absent')
    
#             attendance_values = student_data[col].apply(lambda x: 1 if x in [
#                 self.ENGAGED_STR,
#                 self.PARTIALLY_ENGAGED_STR,
#                 self.NOT_ENGAGED_STR
#             ] else 0)
    
#             sessions_attended = attendance_values.sum()
#             attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
#             attendance_pct = round(attendance_pct)
    
#             engagement_counts = {
#                 'Engaged': 0,
#                 'Partially Engaged': 0,
#                 'Not Engaged': 0,
#                 'Absent': 0
#             }
    
#             for x in student_data[col]:
#                 if x == self.ENGAGED_STR:
#                     engagement_counts['Engaged'] += 1
#                 elif x == self.PARTIALLY_ENGAGED_STR:
#                     engagement_counts['Partially Engaged'] += 1
#                 elif x == self.NOT_ENGAGED_STR:
#                     engagement_counts['Not Engaged'] += 1
#                 else:
#                     engagement_counts['Absent'] += 1  # Count as Absent if not engaged
    
#             # Calculate percentages for engagement states
#             total_sessions = sum(engagement_counts.values())
            
#             # Engagement (%)
#             engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
#             engagement_pct = round(engagement_pct)
    
#             engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
#             engaged_pct = round(engaged_pct)
    
#             partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
#             partially_engaged_pct = round(partially_engaged_pct)
    
#             not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
#             not_engaged_pct = round(not_engaged_pct)
    
#             absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
#             absent_pct = round(absent_pct)
    
#             # Determine if the student attended ≥ 90% of sessions
#             attended_90 = "Yes" if attendance_pct >= 90 else "No"
    
#             # Determine if the student was engaged ≥ 80% of the time
#             engaged_80 = "Yes" if engaged_pct >= 80 else "No"
    
#             # Store metrics in the required order
#             student_metrics[student_name] = {
#                 'Attended ≥ 90%': attended_90,
#                 'Engagement ≥ 80%': engaged_80,
#                 'Attendance (%)': attendance_pct,
#                 # 'Attendance #': sessions_attended,
#                 'Engagement (%)': engagement_pct,
#                 'Engaged (%)': engaged_pct,
#                 'Partially Engaged (%)': partially_engaged_pct,
#                 'Not Engaged (%)': not_engaged_pct,
#                 'Absent (%)': absent_pct
#             }
    
#         # Create a DataFrame from student_metrics
#         student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
#         student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
#         return student_metrics_df
    
#     def compute_average_metrics(self, student_metrics_df):
#         # Calculate the attendance and engagement average percentages across students
#         attendance_avg_stats = student_metrics_df['Attendance (%)'].mean()  # Calculate the average attendance percentage
#         engagement_avg_stats = student_metrics_df['Engagement (%)'].mean()  # Calculate the average engagement percentage
        
#         # Round the averages to make them whole numbers
#         attendance_avg_stats = round(attendance_avg_stats)
#         engagement_avg_stats = round(engagement_avg_stats)
        
#         return attendance_avg_stats, engagement_avg_stats
    
#     def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80):
#         if row["Attended ≥ 90%"] == "No":
#             return "Address Attendance"
#         elif row["Engagement ≥ 80%"] == "No":
#             return "Address Engagement"
#         return "Consider barriers, fidelity, and progress monitoring"




import re
import pandas as pd
import os
from huggingface_hub import InferenceClient

class DataProcessor:
    INTERVENTION_COLUMN_OPTIONS = [
        'Did the intervention happen today?',
        'Did the Intervention Take Place Today?'
    ]
    ENGAGED_STR = 'Engaged'
    PARTIALLY_ENGAGED_STR = 'Partially Engaged'
    NOT_ENGAGED_STR = 'Not Engaged'

    def __init__(self, student_metrics_df=None):
        self.hf_api_key = os.getenv('HF_API_KEY')
        if not self.hf_api_key:
            raise ValueError("HF_API_KEY not set in environment variables")
        self.client = InferenceClient(api_key=self.hf_api_key)
        self.student_metrics_df = student_metrics_df
        self.intervention_column = None  # Will be set when processing data

    def read_excel(self, uploaded_file):
        return pd.read_excel(uploaded_file)

    def format_session_data(self, df):
        date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
        if date_column:
            df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
        else:
            print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.")
        
        df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
        df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
        df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
        return df

    def safe_convert_to_time(self, series, format_str='%I:%M %p'):
        try:
            converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
            if format_str:
                return converted.dt.strftime(format_str)
            return converted
        except Exception as e:
            print(f"Error converting series to time: {e}")
            return series

    def safe_convert_to_datetime(self, series, format_str=None):
        try:
            converted = pd.to_datetime(series, errors='coerce')
            if format_str:
                return converted.dt.strftime(format_str)
            return converted
        except Exception as e:
            print(f"Error converting series to datetime: {e}")
            return series

    def replace_student_names_with_initials(self, df):
        updated_columns = []
        for col in df.columns:
            if col.startswith('Student Attendance'):
                match = re.match(r'Student Attendance \[(.+?)\]', col)
                if match:
                    name = match.group(1)
                    initials = ''.join([part[0] for part in name.split()])
                    updated_columns.append(f'Student Attendance [{initials}]')
                else:
                    updated_columns.append(col)
            else:
                updated_columns.append(col)
        df.columns = updated_columns
        return df

    def find_intervention_column(self, df):
        for column in self.INTERVENTION_COLUMN_OPTIONS:
            if column in df.columns:
                self.intervention_column = column
                return column
        raise ValueError("No intervention column found in the dataframe.")

    def compute_intervention_statistics(self, df):
        intervention_column = self.find_intervention_column(df)
        total_days = len(df)
        sessions_held = df[intervention_column].str.strip().str.lower().eq('yes').sum()
        intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
        return pd.DataFrame({
            'Intervention Dosage (%)': [round(intervention_frequency, 0)],
            'Intervention Sessions Held': [sessions_held],
            'Intervention Sessions Not Held': [total_days - sessions_held],
            'Total Number of Days Available': [total_days]
        })

    def classify_engagement(self, engagement_str):
        engagement_str = str(engagement_str).lower()
        if engagement_str.startswith(self.ENGAGED_STR.lower()):
            return self.ENGAGED_STR
        elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()):
            return self.PARTIALLY_ENGAGED_STR
        elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()):
            return self.NOT_ENGAGED_STR
        else:
            return 'Unknown'

    def compute_student_metrics(self, df):
        intervention_column = self.find_intervention_column(df)
        intervention_df = df[df[intervention_column].str.strip().str.lower() == 'yes']
        intervention_sessions_held = len(intervention_df)
        student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
    
        student_metrics = {}
        for col in student_columns:
            student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
            student_data = intervention_df[[col]].copy()
            student_data[col] = student_data[col].fillna('Absent')
    
            attendance_values = student_data[col].apply(lambda x: 1 if self.classify_engagement(x) in [
                self.ENGAGED_STR,
                self.PARTIALLY_ENGAGED_STR,
                self.NOT_ENGAGED_STR
            ] else 0)
    
            sessions_attended = attendance_values.sum()
            attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
            attendance_pct = round(attendance_pct)
    
            engagement_counts = {
                self.ENGAGED_STR: 0,
                self.PARTIALLY_ENGAGED_STR: 0,
                self.NOT_ENGAGED_STR: 0,
                'Absent': 0
            }
    
            for x in student_data[col]:
                classified_engagement = self.classify_engagement(x)
                if classified_engagement in engagement_counts:
                    engagement_counts[classified_engagement] += 1
                else:
                    engagement_counts['Absent'] += 1  # Count as Absent if not engaged
    
            total_sessions = sum(engagement_counts.values())
            
            engagement_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
            engagement_pct = round(engagement_pct)
    
            engaged_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
            engaged_pct = round(engaged_pct)
    
            partially_engaged_pct = (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
            partially_engaged_pct = round(partially_engaged_pct)
    
            not_engaged_pct = (engagement_counts[self.NOT_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
            not_engaged_pct = round(not_engaged_pct)
    
            absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
                        absent_pct = round(absent_pct)
    
            # Determine if the student attended ≥ 90% of sessions
            attended_90 = "Yes" if attendance_pct >= 90 else "No"
    
            # Determine if the student was engaged ≥ 80% of the time
            engaged_80 = "Yes" if engaged_pct >= 80 else "No"
    
            # Store metrics in the required order
            student_metrics[student_name] = {
                'Attended ≥ 90%': attended_90,
                'Engagement ≥ 80%': engaged_80,
                'Attendance (%)': attendance_pct,
                'Engagement (%)': engagement_pct,
                f'{self.ENGAGED_STR} (%)': engaged_pct,
                f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
                f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
                'Absent (%)': absent_pct
            }
    
        # Create a DataFrame from student_metrics
        student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
        student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
        return student_metrics_df

    def compute_average_metrics(self, student_metrics_df):
        # Calculate the attendance and engagement average percentages across students
        attendance_avg_stats = student_metrics_df['Attendance (%)'].mean()  # Calculate the average attendance percentage
        engagement_avg_stats = student_metrics_df['Engagement (%)'].mean()  # Calculate the average engagement percentage
        
        # Round the averages to make them whole numbers
        attendance_avg_stats = round(attendance_avg_stats)
        engagement_avg_stats = round(engagement_avg_stats)
        
        return attendance_avg_stats, engagement_avg_stats
    
    def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80):
        if row["Attended ≥ 90%"] == "No":
            return "Address Attendance"
        elif row["Engagement ≥ 80%"] == "No":
            return "Address Engagement"
        return "Consider barriers, fidelity, and progress monitoring"