File size: 7,501 Bytes
8cfb9bd 47e386b 8cfb9bd d96c1a5 47e386b d96c1a5 8cfb9bd d96c1a5 47e386b 8cfb9bd 4888d37 8cfb9bd df06091 8cfb9bd 47e386b 8cfb9bd 47e386b a7df111 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# import streamlit as st
# from app_config import AppConfig # Import the configerations class
# from data_processor import DataProcessor # Import the data analysis class
# from visualization import Visualization # Import the data viz class
# from ai_analysis import AIAnalysis # Import the ai analysis class
# from sidebar import Sidebar # Import the Sidebar class
# def main():
# # Initialize the app configuration
# app_config = AppConfig()
# # Initialize the sidebar
# sidebar = Sidebar()
# sidebar.display()
# # Initialize the data processor
# data_processor = DataProcessor()
# # Initialize the visualization handler
# visualization = Visualization()
# # Initialize the AI analysis handler
# ai_analysis = AIAnalysis(data_processor.client)
# st.title("Intervention Program Analysis")
# # File uploader
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
# if uploaded_file is not None:
# try:
# # Read the Excel file into a DataFrame
# df = data_processor.read_excel(uploaded_file)
# # Format the session data
# df = data_processor.format_session_data(df)
# # Replace student names with initials
# df = data_processor.replace_student_names_with_initials(df)
# st.subheader("Uploaded Data")
# st.write(df)
# # Ensure expected column is available
# if DataProcessor.INTERVENTION_COLUMN not in df.columns:
# st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
# return
# # Compute Intervention Session Statistics
# intervention_stats = data_processor.compute_intervention_statistics(df)
# st.subheader("Intervention Session Statistics")
# st.write(intervention_stats)
# # Plot and download intervention statistics
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
# # Compute Student Metrics
# student_metrics_df = data_processor.compute_student_metrics(df)
# st.subheader("Student Metrics")
# st.write(student_metrics_df)
# # Compute Student Metric Averages
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
# # Plot and download student metrics
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
# # Prepare input for the language model
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
# # Generate Notes and Recommendations using Hugging Face LLM
# with st.spinner("Generating AI analysis..."):
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
# st.subheader("AI Analysis")
# st.markdown(recommendations)
# # Download AI output
# ai_analysis.download_llm_output(recommendations, "llm_output.txt")
# except Exception as e:
# st.error(f"Error reading the file: {str(e)}")
# if __name__ == '__main__':
# main()
import streamlit as st
from app_config import AppConfig # Import the configurations class
from data_processor import DataProcessor # Import the data analysis class
from visualization import Visualization # Import the data viz class
from ai_analysis import AIAnalysis # Import the ai analysis class
from sidebar import Sidebar # Import the Sidebar class
def main():
# Initialize the app configuration
app_config = AppConfig()
# Initialize the sidebar
sidebar = Sidebar()
sidebar.display()
# Initialize the data processor
data_processor = DataProcessor()
# Initialize the visualization handler
visualization = Visualization()
# Initialize the AI analysis handler
ai_analysis = AIAnalysis(data_processor.client)
st.title("Intervention Program Analysis")
# File uploader
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
if uploaded_file is not None:
try:
# Read the Excel file into a DataFrame
df = data_processor.read_excel(uploaded_file)
# Format the session data
df = data_processor.format_session_data(df)
# Replace student names with initials
df = data_processor.replace_student_names_with_initials(df)
st.subheader("Uploaded Data")
st.write(df)
# Ensure expected column is available
if DataProcessor.INTERVENTION_COLUMN not in df.columns:
st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
return
# Compute Intervention Session Statistics
intervention_stats = data_processor.compute_intervention_statistics(df)
st.subheader("Intervention Session Statistics")
st.write(intervention_stats)
# Plot and download intervention statistics
intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
# Compute Student Metrics
student_metrics_df = data_processor.compute_student_metrics(df)
st.subheader("Student Metrics")
st.write(student_metrics_df)
# Compute Student Metric Averages
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
# Plot and download student metrics
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
# Evaluate each student and build decision tree diagrams
student_metrics_df['Evaluation'] = student_metrics_df.apply(
lambda row: data_processor.evaluate_student(row), axis=1
)
st.subheader("Student Evaluations")
st.write(student_metrics_df[['Student', 'Evaluation']])
# Build and display decision tree diagrams for each student
for index, row in student_metrics_df.iterrows():
tree_diagram = visualization.build_tree_diagram(row)
st.graphviz_chart(tree_diagram.source)
# Prepare input for the language model
llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
# Generate Notes and Recommendations using Hugging Face LLM
with st.spinner("Generating AI analysis..."):
recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
st.subheader("AI Analysis")
st.markdown(recommendations)
# Download AI output
ai_analysis.download_llm_output(recommendations, "llm_output.txt")
except Exception as e:
st.error(f"Error processing the file: {str(e)}")
if __name__ == '__main__':
main() |