Update main.py
Browse files
main.py
CHANGED
@@ -1,8 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from app_config import AppConfig
|
3 |
-
from data_processor import DataProcessor
|
4 |
-
from visualization import Visualization
|
5 |
-
from ai_analysis import AIAnalysis
|
6 |
from sidebar import Sidebar # Import the Sidebar class
|
7 |
|
8 |
def main():
|
@@ -11,7 +101,7 @@ def main():
|
|
11 |
|
12 |
# Initialize the sidebar
|
13 |
sidebar = Sidebar()
|
14 |
-
sidebar.display()
|
15 |
|
16 |
# Initialize the data processor
|
17 |
data_processor = DataProcessor()
|
@@ -67,6 +157,18 @@ def main():
|
|
67 |
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
68 |
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# Prepare input for the language model
|
71 |
llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
72 |
|
@@ -81,7 +183,7 @@ def main():
|
|
81 |
ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
82 |
|
83 |
except Exception as e:
|
84 |
-
st.error(f"Error
|
85 |
|
86 |
if __name__ == '__main__':
|
87 |
main()
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from app_config import AppConfig # Import the configerations class
|
3 |
+
# from data_processor import DataProcessor # Import the data analysis class
|
4 |
+
# from visualization import Visualization # Import the data viz class
|
5 |
+
# from ai_analysis import AIAnalysis # Import the ai analysis class
|
6 |
+
# from sidebar import Sidebar # Import the Sidebar class
|
7 |
+
|
8 |
+
# def main():
|
9 |
+
# # Initialize the app configuration
|
10 |
+
# app_config = AppConfig()
|
11 |
+
|
12 |
+
# # Initialize the sidebar
|
13 |
+
# sidebar = Sidebar()
|
14 |
+
# sidebar.display()
|
15 |
+
|
16 |
+
# # Initialize the data processor
|
17 |
+
# data_processor = DataProcessor()
|
18 |
+
|
19 |
+
# # Initialize the visualization handler
|
20 |
+
# visualization = Visualization()
|
21 |
+
|
22 |
+
# # Initialize the AI analysis handler
|
23 |
+
# ai_analysis = AIAnalysis(data_processor.client)
|
24 |
+
|
25 |
+
# st.title("Intervention Program Analysis")
|
26 |
+
|
27 |
+
# # File uploader
|
28 |
+
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
29 |
+
|
30 |
+
# if uploaded_file is not None:
|
31 |
+
# try:
|
32 |
+
# # Read the Excel file into a DataFrame
|
33 |
+
# df = data_processor.read_excel(uploaded_file)
|
34 |
+
|
35 |
+
# # Format the session data
|
36 |
+
# df = data_processor.format_session_data(df)
|
37 |
+
|
38 |
+
# # Replace student names with initials
|
39 |
+
# df = data_processor.replace_student_names_with_initials(df)
|
40 |
+
|
41 |
+
# st.subheader("Uploaded Data")
|
42 |
+
# st.write(df)
|
43 |
+
|
44 |
+
# # Ensure expected column is available
|
45 |
+
# if DataProcessor.INTERVENTION_COLUMN not in df.columns:
|
46 |
+
# st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
|
47 |
+
# return
|
48 |
+
|
49 |
+
# # Compute Intervention Session Statistics
|
50 |
+
# intervention_stats = data_processor.compute_intervention_statistics(df)
|
51 |
+
# st.subheader("Intervention Session Statistics")
|
52 |
+
# st.write(intervention_stats)
|
53 |
+
|
54 |
+
# # Plot and download intervention statistics
|
55 |
+
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
56 |
+
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
57 |
+
|
58 |
+
# # Compute Student Metrics
|
59 |
+
# student_metrics_df = data_processor.compute_student_metrics(df)
|
60 |
+
# st.subheader("Student Metrics")
|
61 |
+
# st.write(student_metrics_df)
|
62 |
+
|
63 |
+
# # Compute Student Metric Averages
|
64 |
+
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
65 |
+
|
66 |
+
# # Plot and download student metrics
|
67 |
+
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
68 |
+
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
69 |
+
|
70 |
+
# # Prepare input for the language model
|
71 |
+
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
72 |
+
|
73 |
+
# # Generate Notes and Recommendations using Hugging Face LLM
|
74 |
+
# with st.spinner("Generating AI analysis..."):
|
75 |
+
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
|
76 |
+
|
77 |
+
# st.subheader("AI Analysis")
|
78 |
+
# st.markdown(recommendations)
|
79 |
+
|
80 |
+
# # Download AI output
|
81 |
+
# ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
82 |
+
|
83 |
+
# except Exception as e:
|
84 |
+
# st.error(f"Error reading the file: {str(e)}")
|
85 |
+
|
86 |
+
# if __name__ == '__main__':
|
87 |
+
# main()
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
import streamlit as st
|
92 |
+
from app_config import AppConfig # Import the configurations class
|
93 |
+
from data_processor import DataProcessor # Import the data analysis class
|
94 |
+
from visualization import Visualization # Import the data viz class
|
95 |
+
from ai_analysis import AIAnalysis # Import the ai analysis class
|
96 |
from sidebar import Sidebar # Import the Sidebar class
|
97 |
|
98 |
def main():
|
|
|
101 |
|
102 |
# Initialize the sidebar
|
103 |
sidebar = Sidebar()
|
104 |
+
sidebar.display()
|
105 |
|
106 |
# Initialize the data processor
|
107 |
data_processor = DataProcessor()
|
|
|
157 |
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
158 |
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
159 |
|
160 |
+
# Evaluate each student and build decision tree diagrams
|
161 |
+
student_metrics_df['Evaluation'] = student_metrics_df.apply(
|
162 |
+
lambda row: data_processor.evaluate_student(row), axis=1
|
163 |
+
)
|
164 |
+
st.subheader("Student Evaluations")
|
165 |
+
st.write(student_metrics_df[['Student', 'Evaluation']])
|
166 |
+
|
167 |
+
# Build and display decision tree diagrams for each student
|
168 |
+
for index, row in student_metrics_df.iterrows():
|
169 |
+
tree_diagram = data_processor.build_tree_diagram(row)
|
170 |
+
st.graphviz_chart(tree_diagram.source)
|
171 |
+
|
172 |
# Prepare input for the language model
|
173 |
llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
174 |
|
|
|
183 |
ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
184 |
|
185 |
except Exception as e:
|
186 |
+
st.error(f"Error processing the file: {str(e)}")
|
187 |
|
188 |
if __name__ == '__main__':
|
189 |
main()
|