File size: 8,812 Bytes
2e4aaee
 
 
 
 
1f1be9c
141bf65
 
 
2e4aaee
1f1be9c
141bf65
1f1be9c
3474866
fb1771b
1f1be9c
7639be6
d81ac57
2e4aaee
 
 
 
9e4c45a
2e4aaee
 
67bfc8c
 
2e4aaee
 
 
 
 
 
 
 
abf2278
2e4aaee
 
 
 
 
 
1783d85
 
 
dafd304
1783d85
 
 
dafd304
2e4aaee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4820a
 
 
 
b30b8bf
83b7841
 
 
 
b30b8bf
83b7841
b30b8bf
83b7841
 
 
b30b8bf
83b7841
 
b30b8bf
83b7841
 
 
 
 
 
 
 
b30b8bf
83b7841
b30b8bf
83b7841
 
 
 
 
 
 
 
b30b8bf
83b7841
 
b30b8bf
83b7841
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import streamlit as st
import openai
import random


# Fetch the OpenAI API key from Streamlit secrets
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
# Retrieve the OpenAI API Key from secrets
openai.api_key = st.secrets["OPENAI_API_KEY"]

# # Fetch Pinecone API key and environment from Streamlit secrets
PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"]
# # AUTHENTICATE/INITIALIZE PINCONE SERVICE
from pinecone import Pinecone
# PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6"
pc = Pinecone(api_key=PINECONE_API_KEY)

# # Define the name of the Pinecone index
index_name = 'mimtssinkqa'

# Initialize the OpenAI embeddings object 
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)

# LOAD VECTOR STORE FROM EXISTING INDEX
from langchain_community.vectorstores import Pinecone
vector_store = Pinecone.from_existing_index(index_name='mimtssinkqa', embedding=embeddings)

def ask_with_memory(vector_store, query, chat_history=[]):
    from langchain_openai import ChatOpenAI
    from langchain.chains import ConversationalRetrievalChain
    from langchain.memory import ConversationBufferMemory

    from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate

    llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5, openai_api_key=OPENAI_API_KEY)
    
    retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
    
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)

    system_template = r'''
    Article Title: 'Intensifying Literacy Instruction: Essential Practices.' 
    Article Focus: The main focus of the article is reading and the secondary focus is writing. 
    Expertise: Assume the role of an expert literacy coach with in-depth knowledge of the Simple View of Reading, School-Wide Positive Behavioral Interventions and Supports (SWPBIS), and Social Emotional Learning (SEL).
    Audience: Tailor your response for teachers and administrators seeking to enhance literacy instruction within their educational settings.
    Response Requirements: Provide an answer utilizing the context provided. Unless specifically requested by the user, avoid mentioning the article's header.
    Cover all necessary details relevant to the question posed, drawing on your expertise in literacy instruction and the Simple View of Reading.
    Utilize paragraphs for detailed and descriptive explanations, and bullet points for highlighting key points or steps, ensuring the information is easily understood.
    Conclude with a recapitulation of main points, summarizing the essential takeaways from your response.
    ----------------
    Context: ```{context}```
    '''

    user_template = '''
    Question: ```{question}```
    Chat History: ```{chat_history}```
    '''

    messages= [
        SystemMessagePromptTemplate.from_template(system_template),
        HumanMessagePromptTemplate.from_template(user_template)
    ]

    qa_prompt = ChatPromptTemplate.from_messages (messages)

    chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory,chain_type='stuff', combine_docs_chain_kwargs={'prompt': qa_prompt}, verbose=False
    )

    result = chain.invoke({'question': query, 'chat_history': st.session_state['history']})
    # Append to chat history as a dictionary
    st.session_state['history'].append((query, result['answer']))
    
    return (result['answer'])

# Initialize chat history
if 'history' not in st.session_state:
    st.session_state['history'] = []
    
# # STREAMLIT APPLICATION SETUP WITH PASSWORD

# Define the correct password
# correct_password = "MiBLSi"

#Add the image with a specified width
image_width = 300  # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)
st.subheader('Ink QA™ | Dynamic PDFs')

# Using Markdown for formatted text
st.markdown("""
Resource: **Intensifying Literacy Instruction: Essential Practices**
""", unsafe_allow_html=True)

with st.sidebar:
    # Password input field
    # password = st.text_input("Enter Password:", type="password")
    
    st.image('mimtss.png', width=200)
    st.image('Literacy_Cover.png', width=200)
    st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
        
    Audio_Header_text = """
    **Tune into Dr. St. Martin's introduction**"""
    st.markdown(Audio_Header_text)
        
    # Path or URL to the audio file
    audio_file_path = 'Audio_Introduction_Literacy.m4a'
    # Display the audio player widget
    st.audio(audio_file_path, format='audio/mp4', start_time=0)
        
    # Citation text with Markdown formatting
    citation_Content_text = """
    **Citation**  
    St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
        
    **Table of Contents**  
    * **Introduction**: pg. 1  
    * **Intensifying Literacy Instruction: Essential Practices**: pg. 4  
    * **Purpose**: pg. 4  
    * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
    * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
    * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
    * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
    * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
    * **Motivation and Engagement**: pg. 28
    * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
    * **Summary**: pg. 29
    * **Endnotes**: pg. 30
    * **Acknowledgment**: pg. 39
    """
    st.markdown(citation_Content_text)

# if password == correct_password:
# Define a list of possible placeholder texts
placeholders = [
    'Example: Summarize the article in 200 words or less',
    'Example: What are the essential practices?',
    'Example: I am a teacher, why is this resource important?',
    'Example: How can this resource support my instruction in reading and writing?',
    'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
    'Example: How does this resource address the needs of students scoring below the 20th percentile?',
    'Example: Are there assessment tools included in this resource to monitor student progress?',
    'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
    "Example: How can this resource be used to support students' social-emotional development?",
    "Example: How does this resource align with the district's literacy goals and objectives?",
    'Example: What research and evidence support the effectiveness of this resource?',
    'Example: Does this resource provide guidance on implementation fidelity'
]

# Select a random placeholder from the list
if 'placeholder' not in st.session_state:
    st.session_state.placeholder = random.choice(placeholders)


# CLEAR THE TEXT BOX
with st.form("Question",clear_on_submit=True):
    q = st.text_input(label='Ask a Question | Send a Prompt', placeholder=st.session_state.placeholder, value='', )
    submitted = st.form_submit_button("Submit")
    
    st.divider()
    
    if submitted:
        with st.spinner('Thinking...'):
            answer = ask_with_memory(vector_store, q, st.session_state.history)
        
        # st.write(q)
        st.write(f"**{q}**")
        
        import time
        import random

        def stream_answer():
            for word in answer.split(" "):
                yield word + " "
                # time.sleep(0.02)
                time.sleep(random.uniform(0.03, 0.08))
        
        st.write(stream_answer)
        
        # Display the response in a text area
        # st.text_area('Response: ', value=answer, height=400, key="response_text_area")
        # OR to display as Markdown (interprets Markdown formatting)
        # st.markdown(answer)
            
        st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
        
        st.divider()

        # # Prepare chat history text for display
        history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))

        # Display chat history
        st.text_area('Chat History', value=history_text, height=800)