python / 1.py
Princess3's picture
Upload 2 files
930e8c0 verified
import os, xml.etree.ElementTree as ET, torch, torch.nn as nn, torch.nn.functional as F, numpy as np, logging, requests
from collections import defaultdict
from torch.utils.data import DataLoader, Dataset, TensorDataset
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
from accelerate import Accelerator
from tqdm import tqdm
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configuration class
class Config:
E, H, N, C, B = 512, 32, 1024, 256, 128
M, S, V = 20000, 2048, 1e5
W, L, D = 4000, 2e-4, .15
# Custom Dataset
class MyDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index], self.labels[index]
# Custom Model
class MyModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MyModel, self).__init__()
self.hidden = nn.Linear(input_size, hidden_size)
self.output = nn.Linear(hidden_size, output_size)
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.hidden(x))
h0 = torch.zeros(1, x.size(0), hidden_size)
c0 = torch.zeros(1, x.size(0), hidden_size)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# Memory Network
class MemoryNetwork:
def __init__(self, memory_size, embedding_size):
self.memory_size = memory_size
self.embedding_size = embedding_size
self.memory = np.zeros((memory_size, embedding_size))
self.usage = np.zeros(memory_size)
def store(self, data):
index = np.argmin(self.usage)
self.memory[index] = data
self.usage[index] = 1.0
def retrieve(self, query):
similarities = np.dot(self.memory, query)
index = np.argmax(similarities)
self.usage[index] += 1.0
return self.memory[index]
def update_usage(self):
self.usage *= 0.99
# Dynamic Model
class DM(nn.Module):
def __init__(self, s):
super(DM, self).__init__()
self.s = nn.ModuleDict()
for sn, l in s.items():
self.s[sn] = nn.ModuleList([self.cl(lp) for lp in l])
def cl(self, lp):
l = [nn.Linear(lp['input_size'], lp['output_size'])]
if lp.get('batch_norm', True): l.append(nn.BatchNorm1d(lp['output_size']))
a = lp.get('activation', 'relu')
if a == 'relu': l.append(nn.ReLU(inplace=True))
elif a == 'tanh': l.append(nn.Tanh())
elif a == 'sigmoid': l.append(nn.Sigmoid())
elif a == 'leaky_relu': l.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
elif a == 'elu': l.append(nn.ELU(alpha=1.0, inplace=True))
if dr := lp.get('dropout', 0.0): l.append(nn.Dropout(p=dr))
return nn.Sequential(*l)
def forward(self, x, sn=None):
if sn is not None:
for l in self.s[sn]: x = l(x)
else:
for sn, l in self.s.items():
for l in l: x = l(x)
return x
# Parsing XML
def parse_xml(file_path):
t = ET.parse(file_path)
r = t.getroot()
l = []
for ly in r.findall('.//layer'):
lp = {'input_size': int(ly.get('input_size', 128)), 'output_size': int(ly.get('output_size', 256)), 'activation': ly.get('activation', 'relu').lower()}
l.append(lp)
return l
# Create Model from Folder
def create_model_from_folder(folder_path):
s = defaultdict(list)
for r, d, f in os.walk(folder_path):
for file in f:
if file.endswith('.xml'):
fp = os.path.join(r, file)
l = parse_xml(fp)
sn = os.path.basename(r).replace('.', '_')
s[sn].extend(l)
return DM(dict(s))
# Create Embeddings and Sentences
def create_embeddings_and_sentences(folder_path, model_name="sentence-transformers/all-MiniLM-L6-v2"):
t = AutoTokenizer.from_pretrained(model_name)
m = AutoModel.from_pretrained(model_name)
embeddings, ds = [], []
for r, d, f in os.walk(folder_path):
for file in f:
if file.endswith('.xml'):
fp = os.path.join(r, file)
tree = ET.parse(fp)
root = tree.getroot()
for e in root.iter():
if e.text:
text = e.text.strip()
i = t(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
emb = m(**i).last_hidden_state.mean(dim=1).numpy()
embeddings.append(emb)
ds.append(text)
embeddings = np.vstack(embeddings)
return embeddings, ds
# Query Vector Similarity
def query_vector_similarity(query, embeddings, ds, model_name="sentence-transformers/all-MiniLM-L6-v2"):
t = AutoTokenizer.from_pretrained(model_name)
m = AutoModel.from_pretrained(model_name)
i = t(query, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
qe = m(**i).last_hidden_state.mean(dim=1).numpy()
similarities = cosine_similarity(qe, embeddings)
top_k_indices = similarities[0].argsort()[-5:][::-1]
return [ds[i] for i in top_k_indices]
# Fetch CourtListener Data
def fetch_courtlistener_data(query):
base_url = "https://nzlii.org/cgi-bin/sinosrch.cgi"
params = {"method": "auto", "query": query, "meta": "/nz", "results": "50", "format": "json"}
try:
response = requests.get(base_url, params=params, headers={"Accept": "application/json"}, timeout=10)
response.raise_for_status()
results = response.json().get("results", [])
return [{"title": r.get("title", ""), "citation": r.get("citation", ""), "date": r.get("date", ""), "court": r.get("court", ""), "summary": r.get("summary", ""), "url": r.get("url", "")} for r in results]
except requests.exceptions.RequestException as e:
logging.error(f"Failed to fetch data from NZLII API: {str(e)}")
return []
# Main function
def main():
folder_path = 'data'
model = create_model_from_folder(folder_path)
logging.info(f"Created dynamic PyTorch model with sections: {list(model.s.keys())}")
embeddings, ds = create_embeddings_and_sentences(folder_path)
accelerator = Accelerator()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
num_epochs = 10
dataset = MyDataset(torch.randn(1000, 10), torch.randint(0, 5, (1000,)))
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for epoch in range(num_epochs):
model.train()
for batch_data, batch_labels in dataloader:
optimizer.zero_grad()
outputs = model(batch_data)
loss = criterion(outputs, batch_labels)
accelerator.backward(loss)
optimizer.step()
logging.info(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
query = "example query text"
results = query_vector_similarity(query, embeddings, ds)
logging.info(f"Query results: {results}")
courtlistener_data = fetch_courtlistener_data(query)
logging.info(f"CourtListener API results: {courtlistener_data}")
if __name__ == "__main__":
main()