Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
1.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, xml.etree.ElementTree as ET, torch, torch.nn as nn, torch.nn.functional as F, numpy as np, logging, requests
|
2 |
+
from collections import defaultdict
|
3 |
+
from torch.utils.data import DataLoader, Dataset, TensorDataset
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
from accelerate import Accelerator
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
# Logging setup
|
10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
+
|
12 |
+
# Configuration class
|
13 |
+
class Config:
|
14 |
+
E, H, N, C, B = 512, 32, 1024, 256, 128
|
15 |
+
M, S, V = 20000, 2048, 1e5
|
16 |
+
W, L, D = 4000, 2e-4, .15
|
17 |
+
|
18 |
+
# Custom Dataset
|
19 |
+
class MyDataset(Dataset):
|
20 |
+
def __init__(self, data, labels):
|
21 |
+
self.data = data
|
22 |
+
self.labels = labels
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.data)
|
26 |
+
|
27 |
+
def __getitem__(self, index):
|
28 |
+
return self.data[index], self.labels[index]
|
29 |
+
|
30 |
+
# Custom Model
|
31 |
+
class MyModel(nn.Module):
|
32 |
+
def __init__(self, input_size, hidden_size, output_size):
|
33 |
+
super(MyModel, self).__init__()
|
34 |
+
self.hidden = nn.Linear(input_size, hidden_size)
|
35 |
+
self.output = nn.Linear(hidden_size, output_size)
|
36 |
+
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
|
37 |
+
self.fc = nn.Linear(hidden_size, output_size)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = torch.relu(self.hidden(x))
|
41 |
+
h0 = torch.zeros(1, x.size(0), hidden_size)
|
42 |
+
c0 = torch.zeros(1, x.size(0), hidden_size)
|
43 |
+
out, _ = self.lstm(x, (h0, c0))
|
44 |
+
out = self.fc(out[:, -1, :])
|
45 |
+
return out
|
46 |
+
|
47 |
+
# Memory Network
|
48 |
+
class MemoryNetwork:
|
49 |
+
def __init__(self, memory_size, embedding_size):
|
50 |
+
self.memory_size = memory_size
|
51 |
+
self.embedding_size = embedding_size
|
52 |
+
self.memory = np.zeros((memory_size, embedding_size))
|
53 |
+
self.usage = np.zeros(memory_size)
|
54 |
+
|
55 |
+
def store(self, data):
|
56 |
+
index = np.argmin(self.usage)
|
57 |
+
self.memory[index] = data
|
58 |
+
self.usage[index] = 1.0
|
59 |
+
|
60 |
+
def retrieve(self, query):
|
61 |
+
similarities = np.dot(self.memory, query)
|
62 |
+
index = np.argmax(similarities)
|
63 |
+
self.usage[index] += 1.0
|
64 |
+
return self.memory[index]
|
65 |
+
|
66 |
+
def update_usage(self):
|
67 |
+
self.usage *= 0.99
|
68 |
+
|
69 |
+
# Dynamic Model
|
70 |
+
class DM(nn.Module):
|
71 |
+
def __init__(self, s):
|
72 |
+
super(DM, self).__init__()
|
73 |
+
self.s = nn.ModuleDict()
|
74 |
+
for sn, l in s.items():
|
75 |
+
self.s[sn] = nn.ModuleList([self.cl(lp) for lp in l])
|
76 |
+
|
77 |
+
def cl(self, lp):
|
78 |
+
l = [nn.Linear(lp['input_size'], lp['output_size'])]
|
79 |
+
if lp.get('batch_norm', True): l.append(nn.BatchNorm1d(lp['output_size']))
|
80 |
+
a = lp.get('activation', 'relu')
|
81 |
+
if a == 'relu': l.append(nn.ReLU(inplace=True))
|
82 |
+
elif a == 'tanh': l.append(nn.Tanh())
|
83 |
+
elif a == 'sigmoid': l.append(nn.Sigmoid())
|
84 |
+
elif a == 'leaky_relu': l.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
|
85 |
+
elif a == 'elu': l.append(nn.ELU(alpha=1.0, inplace=True))
|
86 |
+
if dr := lp.get('dropout', 0.0): l.append(nn.Dropout(p=dr))
|
87 |
+
return nn.Sequential(*l)
|
88 |
+
|
89 |
+
def forward(self, x, sn=None):
|
90 |
+
if sn is not None:
|
91 |
+
for l in self.s[sn]: x = l(x)
|
92 |
+
else:
|
93 |
+
for sn, l in self.s.items():
|
94 |
+
for l in l: x = l(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
# Parsing XML
|
98 |
+
def parse_xml(file_path):
|
99 |
+
t = ET.parse(file_path)
|
100 |
+
r = t.getroot()
|
101 |
+
l = []
|
102 |
+
for ly in r.findall('.//layer'):
|
103 |
+
lp = {'input_size': int(ly.get('input_size', 128)), 'output_size': int(ly.get('output_size', 256)), 'activation': ly.get('activation', 'relu').lower()}
|
104 |
+
l.append(lp)
|
105 |
+
return l
|
106 |
+
|
107 |
+
# Create Model from Folder
|
108 |
+
def create_model_from_folder(folder_path):
|
109 |
+
s = defaultdict(list)
|
110 |
+
for r, d, f in os.walk(folder_path):
|
111 |
+
for file in f:
|
112 |
+
if file.endswith('.xml'):
|
113 |
+
fp = os.path.join(r, file)
|
114 |
+
l = parse_xml(fp)
|
115 |
+
sn = os.path.basename(r).replace('.', '_')
|
116 |
+
s[sn].extend(l)
|
117 |
+
return DM(dict(s))
|
118 |
+
|
119 |
+
# Create Embeddings and Sentences
|
120 |
+
def create_embeddings_and_sentences(folder_path, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
121 |
+
t = AutoTokenizer.from_pretrained(model_name)
|
122 |
+
m = AutoModel.from_pretrained(model_name)
|
123 |
+
embeddings, ds = [], []
|
124 |
+
for r, d, f in os.walk(folder_path):
|
125 |
+
for file in f:
|
126 |
+
if file.endswith('.xml'):
|
127 |
+
fp = os.path.join(r, file)
|
128 |
+
tree = ET.parse(fp)
|
129 |
+
root = tree.getroot()
|
130 |
+
for e in root.iter():
|
131 |
+
if e.text:
|
132 |
+
text = e.text.strip()
|
133 |
+
i = t(text, return_tensors="pt", truncation=True, padding=True)
|
134 |
+
with torch.no_grad():
|
135 |
+
emb = m(**i).last_hidden_state.mean(dim=1).numpy()
|
136 |
+
embeddings.append(emb)
|
137 |
+
ds.append(text)
|
138 |
+
embeddings = np.vstack(embeddings)
|
139 |
+
return embeddings, ds
|
140 |
+
|
141 |
+
# Query Vector Similarity
|
142 |
+
def query_vector_similarity(query, embeddings, ds, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
143 |
+
t = AutoTokenizer.from_pretrained(model_name)
|
144 |
+
m = AutoModel.from_pretrained(model_name)
|
145 |
+
i = t(query, return_tensors="pt", truncation=True, padding=True)
|
146 |
+
with torch.no_grad():
|
147 |
+
qe = m(**i).last_hidden_state.mean(dim=1).numpy()
|
148 |
+
similarities = cosine_similarity(qe, embeddings)
|
149 |
+
top_k_indices = similarities[0].argsort()[-5:][::-1]
|
150 |
+
return [ds[i] for i in top_k_indices]
|
151 |
+
|
152 |
+
# Fetch CourtListener Data
|
153 |
+
def fetch_courtlistener_data(query):
|
154 |
+
base_url = "https://nzlii.org/cgi-bin/sinosrch.cgi"
|
155 |
+
params = {"method": "auto", "query": query, "meta": "/nz", "results": "50", "format": "json"}
|
156 |
+
try:
|
157 |
+
response = requests.get(base_url, params=params, headers={"Accept": "application/json"}, timeout=10)
|
158 |
+
response.raise_for_status()
|
159 |
+
results = response.json().get("results", [])
|
160 |
+
return [{"title": r.get("title", ""), "citation": r.get("citation", ""), "date": r.get("date", ""), "court": r.get("court", ""), "summary": r.get("summary", ""), "url": r.get("url", "")} for r in results]
|
161 |
+
except requests.exceptions.RequestException as e:
|
162 |
+
logging.error(f"Failed to fetch data from NZLII API: {str(e)}")
|
163 |
+
return []
|
164 |
+
|
165 |
+
# Main function
|
166 |
+
def main():
|
167 |
+
folder_path = 'data'
|
168 |
+
model = create_model_from_folder(folder_path)
|
169 |
+
logging.info(f"Created dynamic PyTorch model with sections: {list(model.s.keys())}")
|
170 |
+
embeddings, ds = create_embeddings_and_sentences(folder_path)
|
171 |
+
accelerator = Accelerator()
|
172 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
173 |
+
criterion = nn.CrossEntropyLoss()
|
174 |
+
num_epochs = 10
|
175 |
+
dataset = MyDataset(torch.randn(1000, 10), torch.randint(0, 5, (1000,)))
|
176 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
|
177 |
+
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
|
178 |
+
for epoch in range(num_epochs):
|
179 |
+
model.train()
|
180 |
+
for batch_data, batch_labels in dataloader:
|
181 |
+
optimizer.zero_grad()
|
182 |
+
outputs = model(batch_data)
|
183 |
+
loss = criterion(outputs, batch_labels)
|
184 |
+
accelerator.backward(loss)
|
185 |
+
optimizer.step()
|
186 |
+
logging.info(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
|
187 |
+
query = "example query text"
|
188 |
+
results = query_vector_similarity(query, embeddings, ds)
|
189 |
+
logging.info(f"Query results: {results}")
|
190 |
+
courtlistener_data = fetch_courtlistener_data(query)
|
191 |
+
logging.info(f"CourtListener API results: {courtlistener_data}")
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
main()
|
2.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, xml.etree.ElementTree as ET, torch, torch.nn as nn, numpy as np, logging, requests
|
2 |
+
from collections import defaultdict
|
3 |
+
from torch.utils.data import DataLoader, Dataset
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
from accelerate import Accelerator
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
+
|
11 |
+
class Config: E, H, N, C, B, M, S, V, W, L, D = 512, 32, 1024, 256, 128, 20000, 2048, 1e5, 4000, 2e-4, .15
|
12 |
+
|
13 |
+
class MyDataset(Dataset):
|
14 |
+
def __init__(self, data, labels): self.data, self.labels = data, labels
|
15 |
+
def __len__(self): return len(self.data)
|
16 |
+
def __getitem__(self, index): return self.data[index], self.labels[index]
|
17 |
+
|
18 |
+
class MyModel(nn.Module):
|
19 |
+
def __init__(self, input_size, hidden_size, output_size):
|
20 |
+
super(MyModel, self).__init__()
|
21 |
+
self.hidden, self.output = nn.Linear(input_size, hidden_size), nn.Linear(hidden_size, output_size)
|
22 |
+
self.lstm, self.fc = nn.LSTM(input_size, hidden_size, batch_first=True), nn.Linear(hidden_size, output_size)
|
23 |
+
def forward(self, x):
|
24 |
+
x = torch.relu(self.hidden(x))
|
25 |
+
h0, c0 = torch.zeros(1, x.size(0), hidden_size), torch.zeros(1, x.size(0), hidden_size)
|
26 |
+
out, _ = self.lstm(x, (h0, c0))
|
27 |
+
return self.fc(out[:, -1, :])
|
28 |
+
|
29 |
+
class MemoryNetwork:
|
30 |
+
def __init__(self, memory_size, embedding_size):
|
31 |
+
self.memory, self.usage = np.zeros((memory_size, embedding_size)), np.zeros(memory_size)
|
32 |
+
def store(self, data):
|
33 |
+
index = np.argmin(self.usage)
|
34 |
+
self.memory[index], self.usage[index] = data, 1.0
|
35 |
+
def retrieve(self, query):
|
36 |
+
index = np.argmax(np.dot(self.memory, query))
|
37 |
+
self.usage[index] += 1.0
|
38 |
+
return self.memory[index]
|
39 |
+
def update_usage(self): self.usage *= 0.99
|
40 |
+
|
41 |
+
class DM(nn.Module):
|
42 |
+
def __init__(self, s):
|
43 |
+
super(DM, self).__init__()
|
44 |
+
self.s = nn.ModuleDict({sn: nn.ModuleList([self.cl(lp) for lp in l]) for sn, l in s.items()})
|
45 |
+
def cl(self, lp):
|
46 |
+
l = [nn.Linear(lp['input_size'], lp['output_size'])]
|
47 |
+
if lp.get('batch_norm', True): l.append(nn.BatchNorm1d(lp['output_size']))
|
48 |
+
a = lp.get('activation', 'relu')
|
49 |
+
if a == 'relu': l.append(nn.ReLU(inplace=True))
|
50 |
+
elif a == 'tanh': l.append(nn.Tanh())
|
51 |
+
elif a == 'sigmoid': l.append(nn.Sigmoid())
|
52 |
+
elif a == 'leaky_relu': l.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
|
53 |
+
elif a == 'elu': l.append(nn.ELU(alpha=1.0, inplace=True))
|
54 |
+
if dr := lp.get('dropout', 0.0): l.append(nn.Dropout(p=dr))
|
55 |
+
return nn.Sequential(*l)
|
56 |
+
def forward(self, x, sn=None):
|
57 |
+
if sn:
|
58 |
+
for l in self.s[sn]: x = l(x)
|
59 |
+
else:
|
60 |
+
for sn, l in self.s.items():
|
61 |
+
for l in l: x = l(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
def parse_xml(file_path):
|
65 |
+
t, r, l = ET.parse(file_path), ET.parse(file_path).getroot(), []
|
66 |
+
for ly in r.findall('.//layer'):
|
67 |
+
lp = {'input_size': int(ly.get('input_size', 128)), 'output_size': int(ly.get('output_size', 256)), 'activation': ly.get('activation', 'relu').lower()}
|
68 |
+
l.append(lp)
|
69 |
+
return l
|
70 |
+
|
71 |
+
def create_model_from_folder(folder_path):
|
72 |
+
s = defaultdict(list)
|
73 |
+
for r, d, f in os.walk(folder_path):
|
74 |
+
for file in f:
|
75 |
+
if file.endswith('.xml'):
|
76 |
+
s[os.path.basename(r).replace('.', '_')].extend(parse_xml(os.path.join(r, file)))
|
77 |
+
return DM(dict(s))
|
78 |
+
|
79 |
+
def create_embeddings_and_sentences(folder_path, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
80 |
+
t, m, embeddings, ds = AutoTokenizer.from_pretrained(model_name), AutoModel.from_pretrained(model_name), [], []
|
81 |
+
for r, d, f in os.walk(folder_path):
|
82 |
+
for file in f:
|
83 |
+
if file.endswith('.xml'):
|
84 |
+
tree, root = ET.parse(os.path.join(r, file)), ET.parse(os.path.join(r, file)).getroot()
|
85 |
+
for e in root.iter():
|
86 |
+
if e.text:
|
87 |
+
text = e.text.strip()
|
88 |
+
i = t(text, return_tensors="pt", truncation=True, padding=True)
|
89 |
+
with torch.no_grad():
|
90 |
+
embeddings.append(m(**i).last_hidden_state.mean(dim=1).numpy())
|
91 |
+
ds.append(text)
|
92 |
+
return np.vstack(embeddings), ds
|
93 |
+
|
94 |
+
def query_vector_similarity(query, embeddings, ds, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
95 |
+
t, m = AutoTokenizer.from_pretrained(model_name), AutoModel.from_pretrained(model_name)
|
96 |
+
i = t(query, return_tensors="pt", truncation=True, padding=True)
|
97 |
+
with torch.no_grad():
|
98 |
+
qe = m(**i).last_hidden_state.mean(dim=1).numpy()
|
99 |
+
return [ds[i] for i in cosine_similarity(qe, embeddings)[0].argsort()[-5:][::-1]]
|
100 |
+
|
101 |
+
def fetch_courtlistener_data(query):
|
102 |
+
try:
|
103 |
+
response = requests.get("https://nzlii.org/cgi-bin/sinosrch.cgi", params={"method": "auto", "query": query, "meta": "/nz", "results": "50", "format": "json"}, headers={"Accept": "application/json"}, timeout=10)
|
104 |
+
response.raise_for_status()
|
105 |
+
return [{"title": r.get("title", ""), "citation": r.get("citation", ""), "date": r.get("date", ""), "court": r.get("court", ""), "summary": r.get("summary", ""), "url": r.get("url", "")} for r in response.json().get("results", [])]
|
106 |
+
except requests.exceptions.RequestException as e:
|
107 |
+
logging.error(f"Failed to fetch data from NZLII API: {str(e)}")
|
108 |
+
return []
|
109 |
+
|
110 |
+
def main():
|
111 |
+
folder_path, model = 'data', create_model_from_folder('data')
|
112 |
+
logging.info(f"Created dynamic PyTorch model with sections: {list(model.s.keys())}")
|
113 |
+
embeddings, ds = create_embeddings_and_sentences(folder_path)
|
114 |
+
accelerator, optimizer, criterion, num_epochs = Accelerator(), torch.optim.Adam(model.parameters(), lr=0.001), nn.CrossEntropyLoss(), 10
|
115 |
+
dataset, dataloader = MyDataset(torch.randn(1000, 10), torch.randint(0, 5, (1000,))), DataLoader(MyDataset(torch.randn(1000, 10), torch.randint(0, 5, (1000,))), batch_size=32, shuffle=True)
|
116 |
+
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
|
117 |
+
for epoch in range(num_epochs):
|
118 |
+
model.train()
|
119 |
+
for batch_data, batch_labels in dataloader:
|
120 |
+
optimizer.zero_grad()
|
121 |
+
outputs = model(batch_data)
|
122 |
+
loss = criterion(outputs, batch_labels)
|
123 |
+
accelerator.backward(loss)
|
124 |
+
optimizer.step()
|
125 |
+
logging.info(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
|
126 |
+
query = "example query text"
|
127 |
+
logging.info(f"Query results: {query_vector_similarity(query, embeddings, ds)}")
|
128 |
+
logging.info(f"CourtListener API results: {fetch_courtlistener_data(query)}")
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
main()
|