python / model.py
Princess3's picture
Update model.py
cd02111 verified
raw
history blame
4.91 kB
import os
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict, Any, Optional
from collections import defaultdict
from accelerate import Accelerator
class DynamicModel(nn.Module):
def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
super(DynamicModel, self).__init__()
self.sections = nn.ModuleDict()
# Default section if none provided
if not sections:
sections = {
'default': [{
'input_size': 128,
'output_size': 256,
'activation': 'relu'
}]
}
for section_name, layers in sections.items():
self.sections[section_name] = nn.ModuleList()
for layer_params in layers:
self.sections[section_name].append(self.create_layer(layer_params))
def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
layer = nn.Linear(layer_params['input_size'], layer_params['output_size'])
activation = layer_params.get('activation', 'relu')
if activation == 'relu':
return nn.Sequential(layer, nn.ReLU())
elif activation == 'tanh':
return nn.Sequential(layer, nn.Tanh())
elif activation == 'sigmoid':
return nn.Sequential(layer, nn.Sigmoid())
else:
return layer
def forward(self, x: torch.Tensor) -> torch.Tensor:
for section_name, layers in self.sections.items():
for layer in layers:
x = layer(x)
return x
def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
tree = ET.parse(file_path)
root = tree.getroot()
layers = []
for prov in root.findall('.//prov'):
layer_params = {
'input_size': 128,
'output_size': 256,
'activation': 'relu'
}
layers.append(layer_params)
return layers
def create_model_from_folder(folder_path: str) -> DynamicModel:
sections = defaultdict(list)
if not os.path.exists(folder_path):
print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
return DynamicModel({})
xml_files_found = False
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith('.xml'):
xml_files_found = True
file_path = os.path.join(root, file)
try:
layers = parse_xml_file(file_path)
section_name = os.path.basename(root)
sections[section_name].extend(layers)
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
if not xml_files_found:
print("Warning: No XML files found. Creating model with default configuration.")
return DynamicModel({})
return DynamicModel(dict(sections))
def main():
folder_path = 'data/'
model = create_model_from_folder(folder_path)
print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
# Get first section's first layer's input size dynamically
first_section = next(iter(model.sections.keys()))
first_layer = model.sections[first_section][0]
input_features = first_layer[0].in_features
# Create sample input tensor matching the model's expected input size
sample_input = torch.randn(1, input_features)
output = model(sample_input)
print(f"Sample output shape: {output.shape}")
# Initialize accelerator for distributed training
accelerator = Accelerator()
# Setup optimization components
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
num_epochs = 10
# Create synthetic dataset for demonstration
dataset = torch.utils.data.TensorDataset(
torch.randn(100, input_features),
torch.randint(0, 2, (100,))
)
train_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=16,
shuffle=True
)
# Prepare for distributed training
model, optimizer, train_dataloader = accelerator.prepare(
model,
optimizer,
train_dataloader
)
# Training loop
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch_idx, (inputs, labels) in enumerate(train_dataloader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
accelerator.backward(loss)
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(train_dataloader)
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")
if __name__ == "__main__":
main()