File size: 4,906 Bytes
a67dc80
 
 
 
 
2ab54e6
a67dc80
 
 
 
 
 
 
 
2ab54e6
 
 
 
 
 
 
 
 
 
a67dc80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab54e6
 
 
a67dc80
 
 
 
 
 
 
 
2ab54e6
 
 
 
 
a67dc80
 
 
2ab54e6
a67dc80
 
 
 
 
 
 
 
2ab54e6
 
 
 
 
a67dc80
 
cd02111
a67dc80
 
 
 
 
2ab54e6
a67dc80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict, Any, Optional
from collections import defaultdict
from accelerate import Accelerator

class DynamicModel(nn.Module):
    def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
        super(DynamicModel, self).__init__()
        self.sections = nn.ModuleDict()

        # Default section if none provided
        if not sections:
            sections = {
                'default': [{
                    'input_size': 128,
                    'output_size': 256,
                    'activation': 'relu'
                }]
            }

        for section_name, layers in sections.items():
            self.sections[section_name] = nn.ModuleList()
            for layer_params in layers:
                self.sections[section_name].append(self.create_layer(layer_params))

    def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
        layer = nn.Linear(layer_params['input_size'], layer_params['output_size'])
        activation = layer_params.get('activation', 'relu')
        if activation == 'relu':
            return nn.Sequential(layer, nn.ReLU())
        elif activation == 'tanh':
            return nn.Sequential(layer, nn.Tanh())
        elif activation == 'sigmoid':
            return nn.Sequential(layer, nn.Sigmoid())
        else:
            return layer

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for section_name, layers in self.sections.items():
            for layer in layers:
                x = layer(x)
        return x

def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
    tree = ET.parse(file_path)
    root = tree.getroot()

    layers = []
    for prov in root.findall('.//prov'):
        layer_params = {
            'input_size': 128,
            'output_size': 256,
            'activation': 'relu'
        }
        layers.append(layer_params)

    return layers

def create_model_from_folder(folder_path: str) -> DynamicModel:
    sections = defaultdict(list)

    if not os.path.exists(folder_path):
        print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
        return DynamicModel({})

    xml_files_found = False
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.endswith('.xml'):
                xml_files_found = True
                file_path = os.path.join(root, file)
                try:
                    layers = parse_xml_file(file_path)
                    section_name = os.path.basename(root)
                    sections[section_name].extend(layers)
                except Exception as e:
                    print(f"Error processing {file_path}: {str(e)}")

    if not xml_files_found:
        print("Warning: No XML files found. Creating model with default configuration.")
        return DynamicModel({})

    return DynamicModel(dict(sections))

def main():
    folder_path = 'data/'
    model = create_model_from_folder(folder_path)

    print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")

    # Get first section's first layer's input size dynamically
    first_section = next(iter(model.sections.keys()))
    first_layer = model.sections[first_section][0]
    input_features = first_layer[0].in_features
    
    # Create sample input tensor matching the model's expected input size
    sample_input = torch.randn(1, input_features)
    output = model(sample_input)
    print(f"Sample output shape: {output.shape}")

    # Initialize accelerator for distributed training
    accelerator = Accelerator()
    
    # Setup optimization components
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()
    num_epochs = 10

    # Create synthetic dataset for demonstration
    dataset = torch.utils.data.TensorDataset(
        torch.randn(100, input_features),
        torch.randint(0, 2, (100,))
    )
    train_dataloader = torch.utils.data.DataLoader(
        dataset, 
        batch_size=16, 
        shuffle=True
    )

    # Prepare for distributed training
    model, optimizer, train_dataloader = accelerator.prepare(
        model, 
        optimizer, 
        train_dataloader
    )

    # Training loop
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for batch_idx, (inputs, labels) in enumerate(train_dataloader):
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            accelerator.backward(loss)
            optimizer.step()
            total_loss += loss.item()
        
        avg_loss = total_loss / len(train_dataloader)
        print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")

if __name__ == "__main__":
    main()