Spaces:
Runtime error
Runtime error
Update model.py
Browse files
model.py
CHANGED
@@ -3,7 +3,7 @@ import xml.etree.ElementTree as ET
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
-
from typing import List, Dict, Any
|
7 |
from collections import defaultdict
|
8 |
from accelerate import Accelerator
|
9 |
|
@@ -12,6 +12,16 @@ class DynamicModel(nn.Module):
|
|
12 |
super(DynamicModel, self).__init__()
|
13 |
self.sections = nn.ModuleDict()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
for section_name, layers in sections.items():
|
16 |
self.sections[section_name] = nn.ModuleList()
|
17 |
for layer_params in layers:
|
@@ -42,9 +52,9 @@ def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
|
|
42 |
layers = []
|
43 |
for prov in root.findall('.//prov'):
|
44 |
layer_params = {
|
45 |
-
'input_size': 128,
|
46 |
-
'output_size': 256,
|
47 |
-
'activation': 'relu'
|
48 |
}
|
49 |
layers.append(layer_params)
|
50 |
|
@@ -53,9 +63,15 @@ def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
|
|
53 |
def create_model_from_folder(folder_path: str) -> DynamicModel:
|
54 |
sections = defaultdict(list)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
for root, dirs, files in os.walk(folder_path):
|
57 |
for file in files:
|
58 |
if file.endswith('.xml'):
|
|
|
59 |
file_path = os.path.join(root, file)
|
60 |
try:
|
61 |
layers = parse_xml_file(file_path)
|
@@ -64,16 +80,20 @@ def create_model_from_folder(folder_path: str) -> DynamicModel:
|
|
64 |
except Exception as e:
|
65 |
print(f"Error processing {file_path}: {str(e)}")
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def main():
|
70 |
-
folder_path = '
|
71 |
model = create_model_from_folder(folder_path)
|
72 |
|
73 |
print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
|
74 |
|
75 |
# Get first section's first layer's input size dynamically
|
76 |
-
first_section =
|
77 |
first_layer = model.sections[first_section][0]
|
78 |
input_features = first_layer[0].in_features
|
79 |
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
+
from typing import List, Dict, Any, Optional
|
7 |
from collections import defaultdict
|
8 |
from accelerate import Accelerator
|
9 |
|
|
|
12 |
super(DynamicModel, self).__init__()
|
13 |
self.sections = nn.ModuleDict()
|
14 |
|
15 |
+
# Default section if none provided
|
16 |
+
if not sections:
|
17 |
+
sections = {
|
18 |
+
'default': [{
|
19 |
+
'input_size': 128,
|
20 |
+
'output_size': 256,
|
21 |
+
'activation': 'relu'
|
22 |
+
}]
|
23 |
+
}
|
24 |
+
|
25 |
for section_name, layers in sections.items():
|
26 |
self.sections[section_name] = nn.ModuleList()
|
27 |
for layer_params in layers:
|
|
|
52 |
layers = []
|
53 |
for prov in root.findall('.//prov'):
|
54 |
layer_params = {
|
55 |
+
'input_size': 128,
|
56 |
+
'output_size': 256,
|
57 |
+
'activation': 'relu'
|
58 |
}
|
59 |
layers.append(layer_params)
|
60 |
|
|
|
63 |
def create_model_from_folder(folder_path: str) -> DynamicModel:
|
64 |
sections = defaultdict(list)
|
65 |
|
66 |
+
if not os.path.exists(folder_path):
|
67 |
+
print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
|
68 |
+
return DynamicModel({})
|
69 |
+
|
70 |
+
xml_files_found = False
|
71 |
for root, dirs, files in os.walk(folder_path):
|
72 |
for file in files:
|
73 |
if file.endswith('.xml'):
|
74 |
+
xml_files_found = True
|
75 |
file_path = os.path.join(root, file)
|
76 |
try:
|
77 |
layers = parse_xml_file(file_path)
|
|
|
80 |
except Exception as e:
|
81 |
print(f"Error processing {file_path}: {str(e)}")
|
82 |
|
83 |
+
if not xml_files_found:
|
84 |
+
print("Warning: No XML files found. Creating model with default configuration.")
|
85 |
+
return DynamicModel({})
|
86 |
+
|
87 |
+
return DynamicModel(dict(sections))
|
88 |
|
89 |
def main():
|
90 |
+
folder_path = 'Xml_Data'
|
91 |
model = create_model_from_folder(folder_path)
|
92 |
|
93 |
print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
|
94 |
|
95 |
# Get first section's first layer's input size dynamically
|
96 |
+
first_section = next(iter(model.sections.keys()))
|
97 |
first_layer = model.sections[first_section][0]
|
98 |
input_features = first_layer[0].in_features
|
99 |
|