python / x.py
Princess3's picture
Update x.py
2d8ca2e verified
raw
history blame
11.6 kB
import os
import stat
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
import logging
import requests
from collections import defaultdict
from typing import List, Dict, Any
from colorama import Fore, Style, init
from accelerate import Accelerator
from torch.utils.data import DataLoader, TensorDataset
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
import numpy as np
# Initialize colorama
init(autoreset=True)
logging.basicConfig(level=logging.INFO, format='\033[92m%(asctime)s - %(levelname)s - %(message)s\033[0m')
file_path = 'data/'
output_path = 'output/'
# Create output path if it doesn't exist
if not os.path.exists(output_path):
try:
os.makedirs(output_path)
os.chmod(output_path, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # Set full r/w permissions
except PermissionError:
print(f"Permission denied: '{output_path}'")
# Handle the error or try a different path
# Ensure necessary files are created with full r/w permissions
def ensure_file(file_path):
if not os.path.exists(file_path):
with open(file_path, 'w') as f:
pass
os.chmod(file_path, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # Set full r/w permissions
class MagicStateLayer(nn.Module):
def __init__(self, size):
super().__init__()
self.state = nn.Parameter(torch.randn(size))
def forward(self, x):
return x + self.state
class MemoryAugmentationLayer(nn.Module):
def __init__(self, size):
super().__init__()
self.memory = nn.Parameter(torch.randn(size))
def forward(self, x):
return x + self.memory
class HybridAttentionLayer(nn.Module):
def __init__(self, size):
super().__init__()
self.attention = nn.MultiheadAttention(size, num_heads=8)
def forward(self, x):
x = x.unsqueeze(1)
attn_output, _ = self.attention(x, x, x)
return attn_output.squeeze(1)
class DynamicFlashAttentionLayer(nn.Module):
def __init__(self, size):
super().__init__()
self.attention = nn.MultiheadAttention(size, num_heads=8)
def forward(self, x):
x = x.unsqueeze(1)
attn_output, _ = self.attention(x, x, x)
return attn_output.squeeze(1)
class DynamicModel(nn.Module):
def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
super().__init__()
self.sections = nn.ModuleDict({sn: nn.ModuleList([self.create_layer(lp) for lp in layers]) for sn, layers in sections.items()})
def create_layer(self, lp):
layers = [nn.Linear(lp['input_size'], lp['output_size'])]
if lp.get('batch_norm', True):
layers.append(nn.BatchNorm1d(lp['output_size']))
activation = lp.get('activation', 'relu')
if activation == 'relu':
layers.append(nn.ReLU(inplace=True))
elif activation == 'tanh':
layers.append(nn.Tanh())
elif activation == 'sigmoid':
layers.append(nn.Sigmoid())
elif activation == 'leaky_relu':
layers.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
elif activation == 'elu':
layers.append(nn.ELU(alpha=1.0, inplace=True))
if dropout := lp.get('dropout', 0.1):
layers.append(nn.Dropout(p=dropout))
if lp.get('memory_augmentation', True):
layers.append(MemoryAugmentationLayer(lp['output_size']))
if lp.get('hybrid_attention', True):
layers.append(HybridAttentionLayer(lp['output_size']))
if lp.get('dynamic_flash_attention', True):
layers.append(DynamicFlashAttentionLayer(lp['output_size']))
if lp.get('magic_state', True):
layers.append(MagicStateLayer(lp['output_size']))
return nn.Sequential(*layers)
def forward(self, x, section_name=None):
if section_name:
for layer in self.sections[section_name]:
x = layer(x)
else:
for section_name, layers in self.sections.items():
for layer in layers:
x = layer(x)
return x
def parse_xml_file(file_path):
tree, root, layers = ET.parse(file_path), ET.parse(file_path).getroot(), []
for layer in root.findall('.//label'):
lp = {
'input_size': int(layer.get('input_size', 128)),
'output_size': int(layer.get('output_size', 256)),
'activation': layer.get('activation', 'relu').lower()
}
if lp['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
raise ValueError(f"Unsupported activation function: {lp['activation']}")
if lp['input_size'] <= 0 or lp['output_size'] <= 0:
raise ValueError("Layer dimensions must be positive integers")
layers.append(lp)
if not layers:
layers.append({'input_size': 128, 'output_size': 256, 'activation': 'relu'})
return layers
def create_model_from_folder(folder_path):
sections = defaultdict(list)
if not os.path.exists(folder_path):
logging.warning(f"Folder {folder_path} does not exist. Creating model with default configuration.")
return DynamicModel({})
xml_files_found = False
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith('.xml'):
xml_files_found = True
file_path = os.path.join(root, file)
try:
sections[os.path.basename(root).replace('.', '_')].extend(parse_xml_file(file_path))
except Exception as e:
logging.error(f"Error processing {file_path}: {str(e)}")
if not xml_files_found:
logging.warning("No XML files found. Creating model with default configuration.")
return DynamicModel({})
return DynamicModel(dict(sections))
def create_embeddings_and_stores(folder_path, model_name="sentence-transformers/all-MiniLM-L6-v2"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
doc_store = []
embeddings_list = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith('.xml'):
file_path = os.path.join(root, file)
try:
tree, root = ET.parse(file_path), ET.parse(file_path).getroot()
for elem in root.iter():
if elem.text:
text = elem.text.strip()
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
embeddings_list.append(embeddings)
doc_store.append(text)
except Exception as e:
logging.error(f"Error processing {file_path}: {str(e)}")
return embeddings_list, doc_store
def query_embeddings(query, embeddings_list, doc_store, model_name="sentence-transformers/all-MiniLM-L6-v2"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
inputs = tokenizer(query, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
query_embedding = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
similarities = [np.dot(query_embedding, emb.T) for emb in embeddings_list]
top_k_indices = np.argsort(similarities, axis=0)[-5:][::-1]
return [doc_store[i] for i in top_k_indices]
def fetch_courtlistener_data(query):
base_url = "https://nzlii.org/cgi-bin/sinosrch.cgi"
params = {"method": "auto", "query": query, "meta": "/nz", "results": "50", "format": "json"}
try:
response = requests.get(base_url, params=params, headers={"Accept": "application/json"}, timeout=10)
response.raise_for_status()
return [{"title": r.get("title", ""), "citation": r.get("citation", ""), "date": r.get("date", ""), "court": r.get("court", ""), "summary": r.get("summary", ""), "url": r.get("url", "")} for r in response.json().get("results", [])]
except requests.exceptions.RequestException as e:
logging.error(f"Failed to fetch data from NZLII API: {str(e)}")
return []
class CustomModel(nn.Module):
def __init__(self, model_name="distilbert-base-uncased"):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.encoder = AutoModel.from_pretrained(model_name)
self.hidden_size = self.encoder.config.hidden_size
self.dropout = nn.Dropout(p=0.3)
self.fc1 = nn.Linear(self.hidden_size, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 32)
self.fc4 = nn.Linear(32, 16)
self.memory = nn.LSTM(self.hidden_size, 64, bidirectional=True, batch_first=True)
self.memory_fc1 = nn.Linear(64 * 2, 32)
self.memory_fc2 = nn.Linear(32, 16)
def forward(self, data):
tokens = self.tokenizer(data, return_tensors="pt", truncation=True, padding=True)
outputs = self.encoder(**tokens)
x = outputs.last_hidden_state.mean(dim=1)
x = self.dropout(F.relu(self.fc1(x)))
x = self.dropout(F.relu(self.fc2(x)))
x = self.dropout(F.relu(self.fc3(x)))
x = self.fc4(x)
return x
def training_step(self, data, labels, optimizer, criterion):
optimizer.zero_grad()
outputs = self.forward(data)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
return loss.item()
def validation_step(self, data, labels, criterion):
with torch.no_grad():
outputs = self.forward(data)
loss = criterion(outputs, labels)
return loss.item()
def predict(self, input):
self.eval()
with torch.no_grad():
return self.forward(input)
def main():
folder_path = 'data'
model = create_model_from_folder(folder_path)
logging.info(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
embeddings_list, doc_store = create_embeddings_and_stores(folder_path)
accelerator = Accelerator()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
num_epochs = 10
dataset = TensorDataset(torch.randn(100, 128), torch.randint(0, 2, (100,)))
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch_data, batch_labels in dataloader:
optimizer.zero_grad()
outputs = model(batch_data)
loss = criterion(outputs, batch_labels)
accelerator.backward(loss)
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(dataloader)
logging.info(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")
query = "example query text"
results = query_embeddings(query, embeddings_list, doc_store)
logging.info(f"Query results: {results}")
courtlistener_data = fetch_courtlistener_data(query)
logging.info(f"CourtListener API results: {courtlistener_data}")
if __name__ == "__main__":
main()