File size: 11,569 Bytes
d490ea9
 
 
 
 
 
cb6bdc7
 
d490ea9
49c1c17
d490ea9
 
 
cb6bdc7
 
49c1c17
d490ea9
 
 
cb6bdc7
d490ea9
 
 
 
 
 
cb6bdc7
 
 
 
 
 
d490ea9
 
 
 
 
 
 
 
cb6bdc7
 
 
 
 
 
 
 
d490ea9
cb6bdc7
 
d490ea9
 
cb6bdc7
d490ea9
 
 
cb6bdc7
 
d490ea9
 
cb6bdc7
 
d490ea9
 
 
 
cb6bdc7
 
d490ea9
 
cb6bdc7
 
d490ea9
 
 
 
 
cb6bdc7
 
 
 
49c1c17
cb6bdc7
49c1c17
 
 
 
 
 
 
 
 
 
 
 
2d8ca2e
49c1c17
2d8ca2e
49c1c17
2d8ca2e
49c1c17
2d8ca2e
49c1c17
2d8ca2e
49c1c17
 
cb6bdc7
49c1c17
 
 
 
d490ea9
49c1c17
 
 
d490ea9
 
cb6bdc7
 
2d8ca2e
49c1c17
 
 
 
 
cb6bdc7
 
 
d490ea9
cb6bdc7
d490ea9
cb6bdc7
d490ea9
 
cb6bdc7
d490ea9
 
cb6bdc7
d490ea9
 
 
 
 
 
 
 
cb6bdc7
d490ea9
cb6bdc7
d490ea9
cb6bdc7
d490ea9
 
 
cb6bdc7
49c1c17
 
 
 
cb6bdc7
 
 
 
 
 
 
 
 
 
 
49c1c17
 
cb6bdc7
 
 
49c1c17
cb6bdc7
49c1c17
 
 
cb6bdc7
 
49c1c17
 
 
 
cb6bdc7
 
49c1c17
 
cb6bdc7
 
 
 
 
 
 
 
 
 
 
 
 
 
49c1c17
 
 
 
 
cb6bdc7
 
 
 
 
 
 
 
 
 
49c1c17
 
cb6bdc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d490ea9
49c1c17
 
cb6bdc7
49c1c17
 
 
 
 
 
 
cb6bdc7
d490ea9
 
 
cb6bdc7
d490ea9
cb6bdc7
 
 
 
d490ea9
cb6bdc7
 
 
49c1c17
cb6bdc7
 
 
d490ea9
 
49c1c17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import stat
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
import logging
import requests
from collections import defaultdict
from typing import List, Dict, Any
from colorama import Fore, Style, init
from accelerate import Accelerator
from torch.utils.data import DataLoader, TensorDataset
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
import numpy as np

# Initialize colorama
init(autoreset=True)
logging.basicConfig(level=logging.INFO, format='\033[92m%(asctime)s - %(levelname)s - %(message)s\033[0m')

file_path = 'data/'
output_path = 'output/'

# Create output path if it doesn't exist
if not os.path.exists(output_path):
    try:
        os.makedirs(output_path)
        os.chmod(output_path, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO)  # Set full r/w permissions
    except PermissionError:
        print(f"Permission denied: '{output_path}'")
        # Handle the error or try a different path

# Ensure necessary files are created with full r/w permissions
def ensure_file(file_path):
    if not os.path.exists(file_path):
        with open(file_path, 'w') as f:
            pass
        os.chmod(file_path, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO)  # Set full r/w permissions

class MagicStateLayer(nn.Module):
    def __init__(self, size):
        super().__init__()
        self.state = nn.Parameter(torch.randn(size))

    def forward(self, x):
        return x + self.state

class MemoryAugmentationLayer(nn.Module):
    def __init__(self, size):
        super().__init__()
        self.memory = nn.Parameter(torch.randn(size))

    def forward(self, x):
        return x + self.memory

class HybridAttentionLayer(nn.Module):
    def __init__(self, size):
        super().__init__()
        self.attention = nn.MultiheadAttention(size, num_heads=8)

    def forward(self, x):
        x = x.unsqueeze(1)
        attn_output, _ = self.attention(x, x, x)
        return attn_output.squeeze(1)

class DynamicFlashAttentionLayer(nn.Module):
    def __init__(self, size):
        super().__init__()
        self.attention = nn.MultiheadAttention(size, num_heads=8)

    def forward(self, x):
        x = x.unsqueeze(1)
        attn_output, _ = self.attention(x, x, x)
        return attn_output.squeeze(1)

class DynamicModel(nn.Module):
    def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
        super().__init__()
        self.sections = nn.ModuleDict({sn: nn.ModuleList([self.create_layer(lp) for lp in layers]) for sn, layers in sections.items()})

    def create_layer(self, lp):
        layers = [nn.Linear(lp['input_size'], lp['output_size'])]
        if lp.get('batch_norm', True):
            layers.append(nn.BatchNorm1d(lp['output_size']))
        activation = lp.get('activation', 'relu')
        if activation == 'relu':
            layers.append(nn.ReLU(inplace=True))
        elif activation == 'tanh':
            layers.append(nn.Tanh())
        elif activation == 'sigmoid':
            layers.append(nn.Sigmoid())
        elif activation == 'leaky_relu':
            layers.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
        elif activation == 'elu':
            layers.append(nn.ELU(alpha=1.0, inplace=True))
        if dropout := lp.get('dropout', 0.1):
            layers.append(nn.Dropout(p=dropout))
        if lp.get('memory_augmentation', True):
            layers.append(MemoryAugmentationLayer(lp['output_size']))
        if lp.get('hybrid_attention', True):
            layers.append(HybridAttentionLayer(lp['output_size']))
        if lp.get('dynamic_flash_attention', True):
            layers.append(DynamicFlashAttentionLayer(lp['output_size']))
        if lp.get('magic_state', True):
            layers.append(MagicStateLayer(lp['output_size']))
        return nn.Sequential(*layers)

    def forward(self, x, section_name=None):
        if section_name:
            for layer in self.sections[section_name]:
                x = layer(x)
        else:
            for section_name, layers in self.sections.items():
                for layer in layers:
                    x = layer(x)
        return x

def parse_xml_file(file_path):
    tree, root, layers = ET.parse(file_path), ET.parse(file_path).getroot(), []
    for layer in root.findall('.//label'):
        lp = {
            'input_size': int(layer.get('input_size', 128)),
            'output_size': int(layer.get('output_size', 256)),
            'activation': layer.get('activation', 'relu').lower()
        }
        if lp['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
            raise ValueError(f"Unsupported activation function: {lp['activation']}")
        if lp['input_size'] <= 0 or lp['output_size'] <= 0:
            raise ValueError("Layer dimensions must be positive integers")
        layers.append(lp)
    if not layers:
        layers.append({'input_size': 128, 'output_size': 256, 'activation': 'relu'})
    return layers

def create_model_from_folder(folder_path):
    sections = defaultdict(list)
    if not os.path.exists(folder_path):
        logging.warning(f"Folder {folder_path} does not exist. Creating model with default configuration.")
        return DynamicModel({})
    xml_files_found = False
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.endswith('.xml'):
                xml_files_found = True
                file_path = os.path.join(root, file)
                try:
                    sections[os.path.basename(root).replace('.', '_')].extend(parse_xml_file(file_path))
                except Exception as e:
                    logging.error(f"Error processing {file_path}: {str(e)}")
    if not xml_files_found:
        logging.warning("No XML files found. Creating model with default configuration.")
        return DynamicModel({})
    return DynamicModel(dict(sections))

def create_embeddings_and_stores(folder_path, model_name="sentence-transformers/all-MiniLM-L6-v2"):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    doc_store = []
    embeddings_list = []
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.endswith('.xml'):
                file_path = os.path.join(root, file)
                try:
                    tree, root = ET.parse(file_path), ET.parse(file_path).getroot()
                    for elem in root.iter():
                        if elem.text:
                            text = elem.text.strip()
                            inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
                            with torch.no_grad():
                                embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
                            embeddings_list.append(embeddings)
                            doc_store.append(text)
                except Exception as e:
                    logging.error(f"Error processing {file_path}: {str(e)}")
    return embeddings_list, doc_store

def query_embeddings(query, embeddings_list, doc_store, model_name="sentence-transformers/all-MiniLM-L6-v2"):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    inputs = tokenizer(query, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        query_embedding = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
    similarities = [np.dot(query_embedding, emb.T) for emb in embeddings_list]
    top_k_indices = np.argsort(similarities, axis=0)[-5:][::-1]
    return [doc_store[i] for i in top_k_indices]

def fetch_courtlistener_data(query):
    base_url = "https://nzlii.org/cgi-bin/sinosrch.cgi"
    params = {"method": "auto", "query": query, "meta": "/nz", "results": "50", "format": "json"}
    try:
        response = requests.get(base_url, params=params, headers={"Accept": "application/json"}, timeout=10)
        response.raise_for_status()
        return [{"title": r.get("title", ""), "citation": r.get("citation", ""), "date": r.get("date", ""), "court": r.get("court", ""), "summary": r.get("summary", ""), "url": r.get("url", "")} for r in response.json().get("results", [])]
    except requests.exceptions.RequestException as e:
        logging.error(f"Failed to fetch data from NZLII API: {str(e)}")
        return []

class CustomModel(nn.Module):
    def __init__(self, model_name="distilbert-base-uncased"):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.encoder = AutoModel.from_pretrained(model_name)
        self.hidden_size = self.encoder.config.hidden_size
        self.dropout = nn.Dropout(p=0.3)
        self.fc1 = nn.Linear(self.hidden_size, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 32)
        self.fc4 = nn.Linear(32, 16)
        self.memory = nn.LSTM(self.hidden_size, 64, bidirectional=True, batch_first=True)
        self.memory_fc1 = nn.Linear(64 * 2, 32)
        self.memory_fc2 = nn.Linear(32, 16)

    def forward(self, data):
        tokens = self.tokenizer(data, return_tensors="pt", truncation=True, padding=True)
        outputs = self.encoder(**tokens)
        x = outputs.last_hidden_state.mean(dim=1)
        x = self.dropout(F.relu(self.fc1(x)))
        x = self.dropout(F.relu(self.fc2(x)))
        x = self.dropout(F.relu(self.fc3(x)))
        x = self.fc4(x)
        return x

    def training_step(self, data, labels, optimizer, criterion):
        optimizer.zero_grad()
        outputs = self.forward(data)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        return loss.item()

    def validation_step(self, data, labels, criterion):
        with torch.no_grad():
            outputs = self.forward(data)
            loss = criterion(outputs, labels)
        return loss.item()

    def predict(self, input):
        self.eval()
        with torch.no_grad():
            return self.forward(input)

def main():
    folder_path = 'data'
    model = create_model_from_folder(folder_path)
    logging.info(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
    embeddings_list, doc_store = create_embeddings_and_stores(folder_path)
    accelerator = Accelerator()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()
    num_epochs = 10
    dataset = TensorDataset(torch.randn(100, 128), torch.randint(0, 2, (100,)))
    dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
    model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for batch_data, batch_labels in dataloader:
            optimizer.zero_grad()
            outputs = model(batch_data)
            loss = criterion(outputs, batch_labels)
            accelerator.backward(loss)
            optimizer.step()
            total_loss += loss.item()
        avg_loss = total_loss / len(dataloader)
        logging.info(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")
    query = "example query text"
    results = query_embeddings(query, embeddings_list, doc_store)
    logging.info(f"Query results: {results}")
    courtlistener_data = fetch_courtlistener_data(query)
    logging.info(f"CourtListener API results: {courtlistener_data}")

if __name__ == "__main__":
    main()