File size: 8,195 Bytes
a67dc80
 
 
 
 
2ab54e6
a67dc80
 
d5730cd
 
a67dc80
 
 
 
 
2ab54e6
 
 
 
 
9a38883
 
 
2ab54e6
 
a67dc80
 
 
775c6bb
a67dc80
 
 
9a38883
 
 
 
a67dc80
 
9a38883
a67dc80
9a38883
a67dc80
9a38883
 
 
 
 
 
 
 
 
 
 
 
3af37cb
9a38883
3af37cb
9a38883
3af37cb
9a38883
 
 
 
 
 
 
 
a67dc80
9a38883
 
 
 
a67dc80
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
 
 
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
2ab54e6
 
 
9a38883
a67dc80
 
 
 
2ab54e6
 
 
3af37cb
a67dc80
 
 
2ab54e6
a67dc80
 
 
775c6bb
a67dc80
 
 
2ab54e6
 
 
 
a67dc80
 
02e561f
a67dc80
 
94fd810
 
2ab54e6
a67dc80
 
94fd810
a67dc80
 
 
 
 
 
 
 
d5730cd
a67dc80
 
 
d5730cd
 
 
a67dc80
 
 
 
d5730cd
 
a67dc80
 
 
d5730cd
 
a67dc80
 
 
 
 
d5730cd
 
 
 
 
 
a67dc80
 
 
 
 
3af37cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict, Any, Optional
from collections import defaultdict
from accelerate import Accelerator
from torch.utils.data import DataLoader, TensorDataset
from torch.cuda.amp import GradScaler, autocast

class DynamicModel(nn.Module):
    def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
        super(DynamicModel, self).__init__()
        self.sections = nn.ModuleDict()
        if not sections:
            sections = {
                'default': [{
                    'input_size': 128,
                    'output_size': 256,
                    'activation': 'relu',
                    'batch_norm': True,
                    'dropout': 0.1
                }]
            }
        for section_name, layers in sections.items():
            self.sections[section_name] = nn.ModuleList()
            for layer_params in layers:
                print(f"Creating layer in section '{section_name}' with params: {layer_params}")
                self.sections[section_name].append(self.create_layer(layer_params))

    def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
        layers = []
        layers.append(nn.Linear(layer_params['input_size'], layer_params['output_size']))
        if layer_params.get('batch_norm', False):
            layers.append(nn.BatchNorm1d(layer_params['output_size']))
        activation = layer_params.get('activation', 'relu')
        if activation == 'relu':
            layers.append(nn.ReLU(inplace=True))
        elif activation == 'tanh':
            layers.append(nn.Tanh())
        elif activation == 'sigmoid':
            layers.append(nn.Sigmoid())
        elif activation == 'leaky_relu':
            layers.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
        elif activation == 'elu':
            layers.append(nn.ELU(alpha=1.0, inplace=True))
        elif activation is not None:
            raise ValueError(f"Unsupported activation function: {activation}")
        if dropout_rate := layer_params.get('dropout', 0.0):
            layers.append(nn.Dropout(p=dropout_rate))
        if hidden_layers := layer_params.get('hidden_layers', []):
            for hidden_layer_params in hidden_layers:
                layers.append(self.create_layer(hidden_layer_params))
        if layer_params.get('memory_augmentation', True):
            layers.append(MemoryAugmentationLayer(layer_params['output_size']))
        if layer_params.get('hybrid_attention', True):
            layers.append(HybridAttentionLayer(layer_params['output_size']))
        if layer_params.get('dynamic_flash_attention', True):
            layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))
        return nn.Sequential(*layers)

    def forward(self, x: torch.Tensor, section_name: Optional[str] = None) -> torch.Tensor:
        if section_name is not None:
            if section_name not in self.sections:
                raise KeyError(f"Section '{section_name}' not found in model")
            for layer in self.sections[section_name]:
                x = layer(x)
        else:
            for section_name, layers in self.sections.items():
                for layer in layers:
                    x = layer(x)
        return x

class MemoryAugmentationLayer(nn.Module):
    def __init__(self, size: int):
        super(MemoryAugmentationLayer, self).__init__()
        self.memory = nn.Parameter(torch.randn(size))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x + self.memory

class HybridAttentionLayer(nn.Module):
    def __init__(self, size: int):
        super(HybridAttentionLayer, self).__init__()
        self.attention = nn.MultiheadAttention(size, num_heads=8)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.unsqueeze(1)  # Add sequence dimension
        attn_output, _ = self.attention(x, x, x)
        return attn_output.squeeze(1)

class DynamicFlashAttentionLayer(nn.Module):
    def __init__(self, size: int):
        super(DynamicFlashAttentionLayer, self).__init__()
        self.attention = nn.MultiheadAttention(size, num_heads=8)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.unsqueeze(1)  # Add sequence dimension
        attn_output, _ = self.attention(x, x, x)
        return attn_output.squeeze(1)

def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
    tree = ET.parse(file_path)
    root = tree.getroot()
    layers = []
    for layer in root.findall('.//layer'):
        layer_params = {}
        layer_params['input_size'] = int(layer.get('input_size', 128))
        layer_params['output_size'] = int(layer.get('output_size', 256))
        layer_params['activation'] = layer.get('activation', 'relu').lower()
        if layer_params['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
            raise ValueError(f"Unsupported activation function: {layer_params['activation']}")
        if layer_params['input_size'] <= 0 or layer_params['output_size'] <= 0:
            raise ValueError("Layer dimensions must be positive integers")
        layers.append(layer_params)
    if not layers:
        layers.append({
            'input_size': 128,
            'output_size': 256,
            'activation': 'relu'
        })
    return layers

def create_model_from_folder(folder_path: str) -> DynamicModel:
    sections = defaultdict(list)
    if not os.path.exists(folder_path):
        print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
        return DynamicModel({})
    xml_files_found = False
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.endswith('.xml'):
                xml_files_found = True
                file_path = os.path.join(root, file)
                try:
                    layers = parse_xml_file(file_path)
                    section_name = os.path.basename(root).replace('.', '_')
                    sections[section_name].extend(layers)
                except Exception as e:
                    print(f"Error processing {file_path}: {str(e)}")
    if not xml_files_found:
        print("Warning: No XML files found. Creating model with default configuration.")
        return DynamicModel({})
    return DynamicModel(dict(sections))

def main():
    folder_path = 'data'
    model = create_model_from_folder(folder_path)
    print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
    # Print the model architecture
    print(model)
    first_section = next(iter(model.sections.keys()))
    first_layer = model.sections[first_section][0]
    input_features = first_layer[0].in_features
    # Ensure the input tensor size matches the expected input size
    sample_input = torch.randn(1, input_features)
    output = model(sample_input)
    print(f"Sample output shape: {output.shape}")

    accelerator = Accelerator()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()
    num_epochs = 10
    dataset = TensorDataset(
        torch.randn(100, input_features),
        torch.randint(0, 2, (100,))
    )
    train_dataloader = DataLoader(
        dataset,
        batch_size=8,  # Reduced batch size
        shuffle=True
    )

    model, optimizer, train_dataloader = accelerator.prepare(
        model,
        optimizer,
        train_dataloader
    )

    scaler = GradScaler()  # Mixed precision training

    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for batch_idx, (inputs, labels) in enumerate(train_dataloader):
            optimizer.zero_grad()
            with autocast():  # Mixed precision training
                outputs = model(inputs)
                loss = criterion(outputs, labels)
            scaler.scale(loss).backward()
            scaler.step(optimizer)
            scaler.update()
            total_loss += loss.item()
        avg_loss = total_loss / len(train_dataloader)
        print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")

if __name__ == "__main__":
    main()