File size: 13,635 Bytes
a67dc80
 
 
 
 
2ab54e6
a67dc80
 
 
 
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
 
 
9a38883
2ab54e6
 
 
 
 
9a38883
 
 
2ab54e6
 
 
9a38883
a67dc80
 
 
 
 
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
 
9a38883
a67dc80
9a38883
a67dc80
9a38883
 
 
 
 
 
 
a67dc80
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
9a38883
 
 
 
a67dc80
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
 
 
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab54e6
 
 
9a38883
a67dc80
 
 
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
 
2ab54e6
 
 
 
 
a67dc80
 
 
2ab54e6
a67dc80
 
 
 
 
 
 
 
2ab54e6
 
 
 
 
a67dc80
 
9a38883
 
 
 
 
 
 
 
 
 
 
 
 
 
a67dc80
 
 
 
9a38883
2ab54e6
a67dc80
 
9a38883
 
a67dc80
 
 
 
9a38883
a67dc80
9a38883
 
a67dc80
 
 
 
9a38883
a67dc80
 
 
 
 
 
 
 
 
 
9a38883
a67dc80
 
 
 
 
 
9a38883
a67dc80
 
 
 
 
 
 
 
 
 
9a38883
a67dc80
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import os
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict, Any, Optional
from collections import defaultdict
from accelerate import Accelerator

class DynamicModel(nn.Module):
    def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
        """
        Initialize the DynamicModel with configurable neural network sections.

        Args:
            sections (Dict[str, List[Dict[str, Any]]]): Dictionary mapping section names to lists of layer configurations.
                Each layer configuration is a dictionary containing:
                - input_size (int): Size of input features
                - output_size (int): Size of output features
                - activation (str, optional): Activation function name ('relu', 'tanh', 'sigmoid', etc.)
                - dropout (float, optional): Dropout rate
                - batch_norm (bool, optional): Whether to use batch normalization
                - hidden_layers (List[Dict[str, Any]], optional): List of hidden layer configurations
                - memory_augmentation (bool, optional): Whether to add a memory augmentation layer
                - hybrid_attention (bool, optional): Whether to add a hybrid attention layer
                - dynamic_flash_attention (bool, optional): Whether to add a dynamic flash attention layer

        Example:
            sections = {
                'encoder': [
                    {'input_size': 128, 'output_size': 256, 'activation': 'relu', 'batch_norm': True},
                    {'input_size': 256, 'output_size': 512, 'activation': 'leaky_relu', 'dropout': 0.1}
                ],
                'decoder': [
                    {'input_size': 512, 'output_size': 256, 'activation': 'elu'},
                    {'input_size': 256, 'output_size': 128, 'activation': 'tanh'}
                ]
            }
        """
        super(DynamicModel, self).__init__()
        self.sections = nn.ModuleDict()

        # Default section configuration if none provided
        if not sections:
            sections = {
                'default': [{
                    'input_size': 128,
                    'output_size': 256,
                    'activation': 'relu',
                    'batch_norm': True,
                    'dropout': 0.1
                }]
            }

        # Initialize each section with its layer configurations
        for section_name, layers in sections.items():
            self.sections[section_name] = nn.ModuleList()
            for layer_params in layers:
                self.sections[section_name].append(self.create_layer(layer_params))

    def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
        """
        Creates a neural network layer based on provided parameters.

        Args:
            layer_params (Dict[str, Any]): Dictionary containing layer configuration
                Required keys:
                - input_size (int): Size of input features
                - output_size (int): Size of output features
                Optional keys:
                - activation (str): Activation function name ('relu', 'tanh', 'sigmoid', None)
                - dropout (float): Dropout rate if needed
                - batch_norm (bool): Whether to use batch normalization
                - hidden_layers (List[Dict[str, Any]]): List of hidden layer configurations
                - memory_augmentation (bool): Whether to add a memory augmentation layer
                - hybrid_attention (bool): Whether to add a hybrid attention layer
                - dynamic_flash_attention (bool): Whether to add a dynamic flash attention layer

        Returns:
            nn.Module: Configured neural network layer with activation

        Raises:
            KeyError: If required parameters are missing
            ValueError: If activation function is not supported
        """
        layers = []

        # Add linear layer
        layers.append(nn.Linear(layer_params['input_size'], layer_params['output_size']))

        # Add batch normalization if specified
        if layer_params.get('batch_norm', False):
            layers.append(nn.BatchNorm1d(layer_params['output_size']))

        # Add activation function
        activation = layer_params.get('activation', 'relu')
        if activation == 'relu':
            layers.append(nn.ReLU(inplace=True))
        elif activation == 'tanh':
            layers.append(nn.Tanh())
        elif activation == 'sigmoid':
            layers.append(nn.Sigmoid())
        elif activation == 'leaky_relu':
            layers.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
        elif activation == 'elu':
            layers.append(nn.ELU(alpha=1.0, inplace=True))
        elif activation is not None:
            raise ValueError(f"Unsupported activation function: {activation}")

        # Add dropout if specified
        if dropout_rate := layer_params.get('dropout', 0.0):
            layers.append(nn.Dropout(p=dropout_rate))

        # Add hidden layers if specified
        if hidden_layers := layer_params.get('hidden_layers', []):
            for hidden_layer_params in hidden_layers:
                layers.append(self.create_layer(hidden_layer_params))

        # Add memory augmentation layer if specified
        if layer_params.get('memory_augmentation', False):
            layers.append(MemoryAugmentationLayer(layer_params['output_size']))

        # Add hybrid attention layer if specified
        if layer_params.get('hybrid_attention', False):
            layers.append(HybridAttentionLayer(layer_params['output_size']))

        # Add dynamic flash attention layer if specified
        if layer_params.get('dynamic_flash_attention', False):
            layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))

        return nn.Sequential(*layers)

    def forward(self, x: torch.Tensor, section_name: Optional[str] = None) -> torch.Tensor:
        """
        Forward pass through the dynamic model architecture.

        Args:
            x (torch.Tensor): Input tensor to process
            section_name (Optional[str]): Specific section to process. If None, processes all sections

        Returns:
            torch.Tensor: Processed output tensor

        Raises:
            KeyError: If specified section_name doesn't exist
        """
        if section_name is not None:
            if section_name not in self.sections:
                raise KeyError(f"Section '{section_name}' not found in model")
            for layer in self.sections[section_name]:
                x = layer(x)
        else:
            for section_name, layers in self.sections.items():
                for layer in layers:
                    x = layer(x)
        return x

class MemoryAugmentationLayer(nn.Module):
    def __init__(self, size: int):
        super(MemoryAugmentationLayer, self).__init__()
        self.memory = nn.Parameter(torch.randn(size))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x + self.memory

class HybridAttentionLayer(nn.Module):
    def __init__(self, size: int):
        super(HybridAttentionLayer, self).__init__()
        self.attention = nn.MultiheadAttention(size, num_heads=8)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.unsqueeze(1)  # Add sequence dimension
        attn_output, _ = self.attention(x, x, x)
        return attn_output.squeeze(1)

class DynamicFlashAttentionLayer(nn.Module):
    def __init__(self, size: int):
        super(DynamicFlashAttentionLayer, self).__init__()
        self.attention = nn.MultiheadAttention(size, num_heads=8)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.unsqueeze(1)  # Add sequence dimension
        attn_output, _ = self.attention(x, x, x)
        return attn_output.squeeze(1)

def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
    """
    Parses an XML configuration file to extract layer parameters for neural network construction.

    Args:
        file_path (str): Path to the XML configuration file

    Returns:
        List[Dict[str, Any]]: List of dictionaries containing layer configurations

    Raises:
        ET.ParseError: If XML file is malformed
        KeyError: If required attributes are missing in XML
    """
    tree = ET.parse(file_path)
    root = tree.getroot()

    layers = []
    for layer in root.findall('.//layer'):
        layer_params = {}
        layer_params['input_size'] = int(layer.get('input_size', 128))
        layer_params['output_size'] = int(layer.get('output_size', 256))
        layer_params['activation'] = layer.get('activation', 'relu').lower()

        # Validate activation function
        if layer_params['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
            raise ValueError(f"Unsupported activation function: {layer_params['activation']}")

        # Validate dimensions
        if layer_params['input_size'] <= 0 or layer_params['output_size'] <= 0:
            raise ValueError("Layer dimensions must be positive integers")

        layers.append(layer_params)

    if not layers:
        # Fallback to default configuration if no layers found
        layers.append({
            'input_size': 128,
            'output_size': 256,
            'activation': 'relu'
        })

    return layers

def create_model_from_folder(folder_path: str) -> DynamicModel:
    """
    Creates a DynamicModel instance by parsing XML files in the specified folder structure.

    Each subfolder represents a model section, and XML files within contain layer configurations.
    The function recursively walks through the folder structure, processing all XML files to build
    the model architecture.

    Args:
        folder_path (str): Path to the root folder containing XML configuration files

    Returns:
        DynamicModel: A configured neural network model based on the XML specifications

    Raises:
        FileNotFoundError: If the specified folder path doesn't exist
        ET.ParseError: If XML parsing fails for any configuration file
    """
    sections = defaultdict(list)

    if not os.path.exists(folder_path):
        print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
        return DynamicModel({})

    xml_files_found = False
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.endswith('.xml'):
                xml_files_found = True
                file_path = os.path.join(root, file)
                try:
                    layers = parse_xml_file(file_path)
                    section_name = os.path.basename(root)
                    sections[section_name].extend(layers)
                except Exception as e:
                    print(f"Error processing {file_path}: {str(e)}")

    if not xml_files_found:
        print("Warning: No XML files found. Creating model with default configuration.")
        return DynamicModel({})

    return DynamicModel(dict(sections))

def main():
    """
    Main function that demonstrates the creation and training of a dynamic PyTorch model.

    This function:
    1. Creates a dynamic model from XML configurations
    2. Sets up distributed training environment using Accelerator
    3. Configures optimization components (optimizer, loss function)
    4. Creates synthetic dataset for demonstration
    5. Implements distributed training loop with loss tracking

    The model architecture is determined by XML files in the 'Xml_Data' folder,
    where each subfolder represents a model section containing layer configurations.
    """
    folder_path = 'Xml_Data'
    model = create_model_from_folder(folder_path)

    print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")

    # Dynamically determine input size from first layer configuration
    first_section = next(iter(model.sections.keys()))
    first_layer = model.sections[first_section][0]
    input_features = first_layer[0].in_features

    # Validate model with sample input
    sample_input = torch.randn(1, input_features)
    output = model(sample_input)
    print(f"Sample output shape: {output.shape}")

    # Initialize distributed training components
    accelerator = Accelerator()

    # Configure training parameters and optimization components
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()
    num_epochs = 10

    # Generate synthetic dataset for demonstration purposes
    dataset = torch.utils.data.TensorDataset(
        torch.randn(100, input_features),
        torch.randint(0, 2, (100,))
    )
    train_dataloader = torch.utils.data.DataLoader(
        dataset, 
        batch_size=16, 
        shuffle=True
    )

    # Prepare model, optimizer, and dataloader for distributed training
    model, optimizer, train_dataloader = accelerator.prepare(
        model, 
        optimizer, 
        train_dataloader
    )

    # Execute training loop with distributed processing
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for batch_idx, (inputs, labels) in enumerate(train_dataloader):
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            accelerator.backward(loss)
            optimizer.step()
            total_loss += loss.item()

        avg_loss = total_loss / len(train_dataloader)
        print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")

if __name__ == "__main__":
    main()