ArcaneSVK2 / inference /face_detector.py
Podtekatel's picture
Update images
d9b9814
import os
from abc import ABC, abstractmethod
from typing import List
import cv2
import numpy as np
from retinaface import RetinaFace
from retinaface.model import retinaface_model
from .box_utils import convert_to_square
class FaceDetector(ABC):
def __init__(self, target_size):
self.target_size = target_size
@abstractmethod
def detect_crops(self, img, *args, **kwargs) -> List[np.ndarray]:
"""
Img is a numpy ndarray in range [0..255], uint8 dtype, RGB type
Returns ndarray with [x1, y1, x2, y2] in row
"""
pass
@abstractmethod
def postprocess_crops(self, crops, *args, **kwargs) -> List[np.ndarray]:
return crops
def sort_faces(self, crops):
sorted_faces = sorted(crops, key=lambda x: -(x[2] - x[0]) * (x[3] - x[1]))
sorted_faces = np.stack(sorted_faces, axis=0)
return sorted_faces
def fix_range_crops(self, img, crops):
H, W, _ = img.shape
final_crops = []
for crop in crops:
x1, y1, x2, y2 = crop
x1 = max(min(round(x1), W), 0)
y1 = max(min(round(y1), H), 0)
x2 = max(min(round(x2), W), 0)
y2 = max(min(round(y2), H), 0)
new_crop = [x1, y1, x2, y2]
final_crops.append(new_crop)
final_crops = np.array(final_crops, dtype=np.int32)
return final_crops
def crop_faces(self, img, crops) -> List[np.ndarray]:
cropped_faces = []
for crop in crops:
x1, y1, x2, y2 = crop
face_crop = img[y1:y2, x1:x2, :]
cropped_faces.append(face_crop)
return cropped_faces
def unify_and_merge(self, cropped_images):
return cropped_images
def __call__(self, img):
return self.detect_faces(img)
def detect_faces(self, img):
crops = self.detect_crops(img)
if crops is None or len(crops) == 0:
return [], []
crops = self.sort_faces(crops)
updated_crops = self.postprocess_crops(crops)
updated_crops = self.fix_range_crops(img, updated_crops)
cropped_faces = self.crop_faces(img, updated_crops)
unified_faces = self.unify_and_merge(cropped_faces)
return unified_faces, updated_crops
class StatRetinaFaceDetector(FaceDetector):
def __init__(self, target_size=None):
super().__init__(target_size)
self.model = retinaface_model.build_model()
#self.relative_offsets = [0.3258, 0.5225, 0.3258, 0.1290]
self.relative_offsets = [0.3619, 0.5830, 0.3619, 0.1909]
def postprocess_crops(self, crops, *args, **kwargs) -> np.ndarray:
final_crops = []
x1_offset, y1_offset, x2_offset, y2_offset = self.relative_offsets
for crop in crops:
x1, y1, x2, y2 = crop
w, h = x2 - x1, y2 - y1
x1 -= w * x1_offset
y1 -= h * y1_offset
x2 += w * x2_offset
y2 += h * y2_offset
crop = np.array([x1, y1, x2, y2], dtype=crop.dtype)
crop = convert_to_square(crop)
final_crops.append(crop)
final_crops = np.stack(final_crops, axis=0)
return final_crops
def detect_crops(self, img, *args, **kwargs):
faces = RetinaFace.detect_faces(img, model=self.model)
crops = []
if isinstance(faces, tuple):
faces = {}
for name, face in faces.items():
x1, y1, x2, y2 = face['facial_area']
crop = np.array([x1, y1, x2, y2])
crops.append(crop)
if len(crops) > 0:
crops = np.stack(crops, axis=0)
return crops
def unify_and_merge(self, cropped_images):
if self.target_size is None:
return cropped_images
else:
resized_images = []
for cropped_image in cropped_images:
resized_image = cv2.resize(cropped_image, (self.target_size, self.target_size),
interpolation=cv2.INTER_LINEAR)
resized_images.append(resized_image)
resized_images = np.stack(resized_images, axis=0)
return resized_images