File size: 4,188 Bytes
046b3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9b9814
046b3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
from abc import ABC, abstractmethod
from typing import List

import cv2
import numpy as np
from retinaface import RetinaFace
from retinaface.model import retinaface_model

from .box_utils import convert_to_square


class FaceDetector(ABC):
    def __init__(self, target_size):
        self.target_size = target_size
    @abstractmethod
    def detect_crops(self, img, *args, **kwargs) -> List[np.ndarray]:
        """
        Img is a numpy ndarray in range [0..255], uint8 dtype, RGB type
        Returns ndarray with [x1, y1, x2, y2] in row
        """
        pass

    @abstractmethod
    def postprocess_crops(self, crops, *args, **kwargs) -> List[np.ndarray]:
        return crops

    def sort_faces(self, crops):
        sorted_faces = sorted(crops, key=lambda x: -(x[2] - x[0]) * (x[3] - x[1]))
        sorted_faces = np.stack(sorted_faces, axis=0)
        return sorted_faces

    def fix_range_crops(self, img, crops):
        H, W, _ = img.shape
        final_crops = []
        for crop in crops:
            x1, y1, x2, y2 = crop
            x1 = max(min(round(x1), W), 0)
            y1 = max(min(round(y1), H), 0)
            x2 = max(min(round(x2), W), 0)
            y2 = max(min(round(y2), H), 0)
            new_crop = [x1, y1, x2, y2]
            final_crops.append(new_crop)
        final_crops = np.array(final_crops, dtype=np.int32)
        return final_crops

    def crop_faces(self, img, crops) -> List[np.ndarray]:
        cropped_faces = []
        for crop in crops:
            x1, y1, x2, y2 = crop
            face_crop = img[y1:y2, x1:x2, :]
            cropped_faces.append(face_crop)
        return cropped_faces

    def unify_and_merge(self, cropped_images):
        return cropped_images

    def __call__(self, img):
        return self.detect_faces(img)

    def detect_faces(self, img):
        crops = self.detect_crops(img)
        if crops is None or len(crops) == 0:
            return [], []
        crops = self.sort_faces(crops)
        updated_crops = self.postprocess_crops(crops)
        updated_crops = self.fix_range_crops(img, updated_crops)
        cropped_faces = self.crop_faces(img, updated_crops)
        unified_faces = self.unify_and_merge(cropped_faces)
        return unified_faces, updated_crops


class StatRetinaFaceDetector(FaceDetector):
    def __init__(self, target_size=None):
        super().__init__(target_size)
        self.model = retinaface_model.build_model()
        #self.relative_offsets = [0.3258, 0.5225, 0.3258, 0.1290]
        self.relative_offsets = [0.3619, 0.5830, 0.3619, 0.1909]

    def postprocess_crops(self, crops, *args, **kwargs) -> np.ndarray:
        final_crops = []
        x1_offset, y1_offset, x2_offset, y2_offset = self.relative_offsets
        for crop in crops:
            x1, y1, x2, y2 = crop
            w, h = x2 - x1, y2 - y1
            x1 -= w * x1_offset
            y1 -= h * y1_offset
            x2 += w * x2_offset
            y2 += h * y2_offset
            crop = np.array([x1, y1, x2, y2], dtype=crop.dtype)
            crop = convert_to_square(crop)
            final_crops.append(crop)
        final_crops = np.stack(final_crops, axis=0)
        return final_crops

    def detect_crops(self, img, *args, **kwargs):
        faces = RetinaFace.detect_faces(img, model=self.model)
        crops = []
        if isinstance(faces, tuple):
            faces = {}
        for name, face in faces.items():
            x1, y1, x2, y2 = face['facial_area']
            crop = np.array([x1, y1, x2, y2])
            crops.append(crop)
        if len(crops) > 0:
            crops = np.stack(crops, axis=0)
        return crops

    def unify_and_merge(self, cropped_images):
        if self.target_size is None:
            return cropped_images
        else:
            resized_images = []
            for cropped_image in cropped_images:
                resized_image = cv2.resize(cropped_image, (self.target_size, self.target_size),
                                           interpolation=cv2.INTER_LINEAR)
                resized_images.append(resized_image)

            resized_images = np.stack(resized_images, axis=0)
            return resized_images