Spaces:
Running
on
L4
Running
on
L4
import argparse | |
import logging | |
import os | |
import pathlib | |
import time | |
import tempfile | |
from pathlib import Path | |
pathlib.PosixPath = pathlib.PosixPath | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
import torch | |
import torchaudio | |
import random | |
import numpy as np | |
from data.tokenizer import ( | |
AudioTokenizer, | |
tokenize_audio, | |
) | |
from data.collation import get_text_token_collater | |
from models.vallex import VALLE | |
from utils.g2p import PhonemeBpeTokenizer | |
import gradio as gr | |
import whisper | |
torch.set_num_threads(1) | |
torch.set_num_interop_threads(1) | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._set_graph_executor_optimize(False) | |
# torch.manual_seed(42) | |
lang2token = { | |
'zh': "[ZH]", | |
'ja': "[JA]", | |
"en": "[EN]", | |
} | |
lang2code = { | |
'zh': 0, | |
'ja': 1, | |
"en": 2, | |
} | |
token2lang = { | |
'[ZH]': "zh", | |
'[JA]': "ja", | |
"[EN]": "en", | |
} | |
code2lang = { | |
0: 'zh', | |
1: 'ja', | |
2: "en", | |
} | |
langdropdown2token = { | |
'English': "[EN]", | |
'中文': "[ZH]", | |
'日本語': "[JA]", | |
'mix': "", | |
} | |
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") | |
text_collater = get_text_token_collater() | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda", 0) | |
# VALL-E-X model | |
model = VALLE( | |
1024, | |
16, | |
12, | |
norm_first=True, | |
add_prenet=False, | |
prefix_mode=1, | |
share_embedding=True, | |
nar_scale_factor=1.0, | |
prepend_bos=True, | |
num_quantizers=8, | |
) | |
checkpoint = torch.load("./epoch-10.pt", map_location='cpu') | |
missing_keys, unexpected_keys = model.load_state_dict( | |
checkpoint["model"], strict=True | |
) | |
assert not missing_keys | |
model.to('cpu') | |
model.eval() | |
# Encodec model | |
audio_tokenizer = AudioTokenizer(device) | |
# ASR | |
whisper_model = whisper.load_model("medium").cpu() | |
def clear_prompts(): | |
try: | |
path = tempfile.gettempdir() | |
for eachfile in os.listdir(path): | |
filename = os.path.join(path, eachfile) | |
if os.path.isfile(filename) and filename.endswith(".npz"): | |
lastmodifytime = os.stat(filename).st_mtime | |
endfiletime = time.time() - 60 | |
if endfiletime > lastmodifytime: | |
os.remove(filename) | |
except: | |
return | |
def transcribe_one(model, audio_path): | |
# load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio(audio_path) | |
audio = whisper.pad_or_trim(audio) | |
# make log-Mel spectrogram and move to the same device as the model | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# detect the spoken language | |
_, probs = model.detect_language(mel) | |
print(f"Detected language: {max(probs, key=probs.get)}") | |
lang = max(probs, key=probs.get) | |
# decode the audio | |
options = whisper.DecodingOptions(beam_size=5) | |
result = whisper.decode(model, mel, options) | |
# print the recognized text | |
print(result.text) | |
text_pr = result.text | |
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": | |
text_pr += "." | |
return lang, text_pr | |
def make_npz_prompt(name, uploaded_audio, recorded_audio): | |
global model, text_collater, text_tokenizer, audio_tokenizer | |
clear_prompts() | |
audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio | |
sr, wav_pr = audio_prompt | |
wav_pr = torch.FloatTensor(wav_pr) / 32768 | |
if wav_pr.size(-1) == 2: | |
wav_pr = wav_pr.mean(-1, keepdim=False) | |
text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False) | |
# tokenize audio | |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr.unsqueeze(0), sr)) | |
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() | |
# tokenize text | |
text_tokens, enroll_x_lens = text_collater( | |
[ | |
text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
] | |
) | |
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" | |
# save as npz file | |
np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), | |
audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) | |
return message, os.path.join(tempfile.gettempdir(), f"{name}.npz") | |
def make_prompt(name, wav, sr, save=True): | |
global whisper_model | |
whisper_model.to(device) | |
if not isinstance(wav, torch.FloatTensor): | |
wav = torch.tensor(wav) | |
if wav.abs().max() > 1: | |
wav /= wav.abs().max() | |
if wav.size(-1) == 2: | |
wav = wav.mean(-1, keepdim=False) | |
if wav.ndim == 1: | |
wav = wav.unsqueeze(0) | |
assert wav.ndim and wav.size(0) == 1 | |
torchaudio.save(f"./prompts/{name}.wav", wav, sr) | |
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") | |
lang_token = lang2token[lang] | |
text = lang_token + text + lang_token | |
with open(f"./prompts/{name}.txt", 'w') as f: | |
f.write(text) | |
if not save: | |
os.remove(f"./prompts/{name}.wav") | |
os.remove(f"./prompts/{name}.txt") | |
whisper_model.cpu() | |
torch.cuda.empty_cache() | |
return text, lang | |
def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt): | |
global model, text_collater, text_tokenizer, audio_tokenizer | |
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt | |
sr, wav_pr = audio_prompt | |
wav_pr = torch.FloatTensor(wav_pr)/32768 | |
if wav_pr.size(-1) == 2: | |
wav_pr = wav_pr.mean(-1, keepdim=False) | |
text_pr, lang_pr = make_prompt(str(random.randint(0, 10000000)), wav_pr, sr, save=False) | |
lang_token = langdropdown2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
# onload model | |
model.to(device) | |
# tokenize audio | |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr.unsqueeze(0), sr)) | |
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device) | |
# tokenize text | |
logging.info(f"synthesize text: {text}") | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
text_tokenizer.tokenize(text=f"{text_pr}{text}".strip()) | |
] | |
) | |
enroll_x_lens = None | |
if text_pr: | |
_, enroll_x_lens = text_collater( | |
[ | |
text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
] | |
) | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=lang, | |
) | |
samples = audio_tokenizer.decode( | |
[(encoded_frames.transpose(2, 1), None)] | |
) | |
# offload model | |
model.to('cpu') | |
torch.cuda.empty_cache() | |
message = f"text prompt: {text_pr}\nsythesized text: {text}" | |
return message, (24000, samples[0][0].cpu().numpy()) | |
def infer_from_prompt(text, language, accent, prompt_file): | |
# onload model | |
model.to(device) | |
clear_prompts() | |
# text to synthesize | |
lang_token = langdropdown2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
# load prompt | |
prompt_data = np.load(prompt_file.name) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
text_tokenizer.tokenize(text=f"_{text}".strip()) | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=lang, | |
) | |
samples = audio_tokenizer.decode( | |
[(encoded_frames.transpose(2, 1), None)] | |
) | |
# offload model | |
model.to('cpu') | |
torch.cuda.empty_cache() | |
message = f"sythesized text: {text}" | |
return message, (24000, samples[0][0].cpu().numpy()) | |
def main(): | |
app = gr.Blocks() | |
with app: | |
with gr.Tab("Infer from audio"): | |
with gr.Row(): | |
with gr.Column(): | |
textbox = gr.TextArea(label="Text", | |
placeholder="Type your sentence here", | |
value="Hello, it's nice to meet you.", elem_id=f"tts-input") | |
language_dropdown = gr.Dropdown(choices=['English', '中文', '日本語', 'mix'], value='English', label='language') | |
accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') | |
upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
with gr.Column(): | |
text_output = gr.Textbox(label="Message") | |
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn = gr.Button("Generate!") | |
btn.click(infer_from_audio, | |
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt], | |
outputs=[text_output, audio_output]) | |
textbox_mp = gr.TextArea(label="Prompt name", | |
placeholder="Name your prompt here", | |
value="prompt_1", elem_id=f"prompt-name") | |
btn_mp = gr.Button("Make prompt!") | |
prompt_output = gr.File(interactive=False) | |
btn_mp.click(make_npz_prompt, | |
inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt], | |
outputs=[text_output, prompt_output]) | |
with gr.Tab("Make prompt"): | |
with gr.Row(): | |
with gr.Column(): | |
textbox2 = gr.TextArea(label="Prompt name", | |
placeholder="Name your prompt here", | |
value="prompt_1", elem_id=f"prompt-name") | |
upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
with gr.Column(): | |
text_output_2 = gr.Textbox(label="Message") | |
prompt_output_2 = gr.File(interactive=False) | |
btn_2 = gr.Button("Make!") | |
btn_2.click(make_npz_prompt, | |
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2], | |
outputs=[text_output_2, prompt_output_2]) | |
with gr.Tab("Infer from prompt"): | |
with gr.Row(): | |
with gr.Column(): | |
textbox_3 = gr.TextArea(label="Text", | |
placeholder="Type your sentence here", | |
value="Hello, it's nice to meet you.", elem_id=f"tts-input") | |
language_dropdown_3 = gr.Dropdown(choices=['English', '中文', '日本語', 'mix'], value='English', | |
label='language') | |
accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', | |
label='accent') | |
prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True) | |
with gr.Column(): | |
text_output_3 = gr.Textbox(label="Message") | |
audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn_3 = gr.Button("Generate!") | |
btn_3.click(infer_from_prompt, | |
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, prompt_file], | |
outputs=[text_output_3, audio_output_3]) | |
app.launch() | |
if __name__ == "__main__": | |
formatter = ( | |
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
main() |