Spaces:
Running
on
L4
Running
on
L4
File size: 13,051 Bytes
b1e1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import argparse
import logging
import os
import pathlib
import time
import tempfile
from pathlib import Path
pathlib.PosixPath = pathlib.PosixPath
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
import torch
import torchaudio
import random
import numpy as np
from data.tokenizer import (
AudioTokenizer,
tokenize_audio,
)
from data.collation import get_text_token_collater
from models.vallex import VALLE
from utils.g2p import PhonemeBpeTokenizer
import gradio as gr
import whisper
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
# torch.manual_seed(42)
lang2token = {
'zh': "[ZH]",
'ja': "[JA]",
"en": "[EN]",
}
lang2code = {
'zh': 0,
'ja': 1,
"en": 2,
}
token2lang = {
'[ZH]': "zh",
'[JA]': "ja",
"[EN]": "en",
}
code2lang = {
0: 'zh',
1: 'ja',
2: "en",
}
langdropdown2token = {
'English': "[EN]",
'中文': "[ZH]",
'日本語': "[JA]",
'mix': "",
}
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json")
text_collater = get_text_token_collater()
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
# VALL-E-X model
model = VALLE(
1024,
16,
12,
norm_first=True,
add_prenet=False,
prefix_mode=1,
share_embedding=True,
nar_scale_factor=1.0,
prepend_bos=True,
num_quantizers=8,
)
checkpoint = torch.load("./epoch-10.pt", map_location='cpu')
missing_keys, unexpected_keys = model.load_state_dict(
checkpoint["model"], strict=True
)
assert not missing_keys
model.to('cpu')
model.eval()
# Encodec model
audio_tokenizer = AudioTokenizer(device)
# ASR
whisper_model = whisper.load_model("medium").cpu()
def clear_prompts():
try:
path = tempfile.gettempdir()
for eachfile in os.listdir(path):
filename = os.path.join(path, eachfile)
if os.path.isfile(filename) and filename.endswith(".npz"):
lastmodifytime = os.stat(filename).st_mtime
endfiletime = time.time() - 60
if endfiletime > lastmodifytime:
os.remove(filename)
except:
return
def transcribe_one(model, audio_path):
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
lang = max(probs, key=probs.get)
# decode the audio
options = whisper.DecodingOptions(beam_size=5)
result = whisper.decode(model, mel, options)
# print the recognized text
print(result.text)
text_pr = result.text
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、":
text_pr += "."
return lang, text_pr
def make_npz_prompt(name, uploaded_audio, recorded_audio):
global model, text_collater, text_tokenizer, audio_tokenizer
clear_prompts()
audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio
sr, wav_pr = audio_prompt
wav_pr = torch.FloatTensor(wav_pr) / 32768
if wav_pr.size(-1) == 2:
wav_pr = wav_pr.mean(-1, keepdim=False)
text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False)
# tokenize audio
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr.unsqueeze(0), sr))
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy()
# tokenize text
text_tokens, enroll_x_lens = text_collater(
[
text_tokenizer.tokenize(text=f"{text_pr}".strip())
]
)
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n"
# save as npz file
np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"),
audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr])
return message, os.path.join(tempfile.gettempdir(), f"{name}.npz")
def make_prompt(name, wav, sr, save=True):
global whisper_model
whisper_model.to(device)
if not isinstance(wav, torch.FloatTensor):
wav = torch.tensor(wav)
if wav.abs().max() > 1:
wav /= wav.abs().max()
if wav.size(-1) == 2:
wav = wav.mean(-1, keepdim=False)
if wav.ndim == 1:
wav = wav.unsqueeze(0)
assert wav.ndim and wav.size(0) == 1
torchaudio.save(f"./prompts/{name}.wav", wav, sr)
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav")
lang_token = lang2token[lang]
text = lang_token + text + lang_token
with open(f"./prompts/{name}.txt", 'w') as f:
f.write(text)
if not save:
os.remove(f"./prompts/{name}.wav")
os.remove(f"./prompts/{name}.txt")
whisper_model.cpu()
torch.cuda.empty_cache()
return text, lang
@torch.no_grad()
def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt):
global model, text_collater, text_tokenizer, audio_tokenizer
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt
sr, wav_pr = audio_prompt
wav_pr = torch.FloatTensor(wav_pr)/32768
if wav_pr.size(-1) == 2:
wav_pr = wav_pr.mean(-1, keepdim=False)
text_pr, lang_pr = make_prompt(str(random.randint(0, 10000000)), wav_pr, sr, save=False)
lang_token = langdropdown2token[language]
lang = token2lang[lang_token]
text = lang_token + text + lang_token
# onload model
model.to(device)
# tokenize audio
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr.unsqueeze(0), sr))
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device)
# tokenize text
logging.info(f"synthesize text: {text}")
text_tokens, text_tokens_lens = text_collater(
[
text_tokenizer.tokenize(text=f"{text_pr}{text}".strip())
]
)
enroll_x_lens = None
if text_pr:
_, enroll_x_lens = text_collater(
[
text_tokenizer.tokenize(text=f"{text_pr}".strip())
]
)
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]]
encoded_frames = model.inference(
text_tokens.to(device),
text_tokens_lens.to(device),
audio_prompts,
enroll_x_lens=enroll_x_lens,
top_k=-100,
temperature=1,
prompt_language=lang_pr,
text_language=lang,
)
samples = audio_tokenizer.decode(
[(encoded_frames.transpose(2, 1), None)]
)
# offload model
model.to('cpu')
torch.cuda.empty_cache()
message = f"text prompt: {text_pr}\nsythesized text: {text}"
return message, (24000, samples[0][0].cpu().numpy())
@torch.no_grad()
def infer_from_prompt(text, language, accent, prompt_file):
# onload model
model.to(device)
clear_prompts()
# text to synthesize
lang_token = langdropdown2token[language]
lang = token2lang[lang_token]
text = lang_token + text + lang_token
# load prompt
prompt_data = np.load(prompt_file.name)
audio_prompts = prompt_data['audio_tokens']
text_prompts = prompt_data['text_tokens']
lang_pr = prompt_data['lang_code']
lang_pr = code2lang[int(lang_pr)]
# numpy to tensor
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device)
text_prompts = torch.tensor(text_prompts).type(torch.int32)
enroll_x_lens = text_prompts.shape[-1]
logging.info(f"synthesize text: {text}")
text_tokens, text_tokens_lens = text_collater(
[
text_tokenizer.tokenize(text=f"_{text}".strip())
]
)
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1)
text_tokens_lens += enroll_x_lens
# accent control
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]]
encoded_frames = model.inference(
text_tokens.to(device),
text_tokens_lens.to(device),
audio_prompts,
enroll_x_lens=enroll_x_lens,
top_k=-100,
temperature=1,
prompt_language=lang_pr,
text_language=lang,
)
samples = audio_tokenizer.decode(
[(encoded_frames.transpose(2, 1), None)]
)
# offload model
model.to('cpu')
torch.cuda.empty_cache()
message = f"sythesized text: {text}"
return message, (24000, samples[0][0].cpu().numpy())
def main():
app = gr.Blocks()
with app:
with gr.Tab("Infer from audio"):
with gr.Row():
with gr.Column():
textbox = gr.TextArea(label="Text",
placeholder="Type your sentence here",
value="Hello, it's nice to meet you.", elem_id=f"tts-input")
language_dropdown = gr.Dropdown(choices=['English', '中文', '日本語', 'mix'], value='English', label='language')
accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent')
upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True)
record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True)
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
btn = gr.Button("Generate!")
btn.click(infer_from_audio,
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt],
outputs=[text_output, audio_output])
textbox_mp = gr.TextArea(label="Prompt name",
placeholder="Name your prompt here",
value="prompt_1", elem_id=f"prompt-name")
btn_mp = gr.Button("Make prompt!")
prompt_output = gr.File(interactive=False)
btn_mp.click(make_npz_prompt,
inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt],
outputs=[text_output, prompt_output])
with gr.Tab("Make prompt"):
with gr.Row():
with gr.Column():
textbox2 = gr.TextArea(label="Prompt name",
placeholder="Name your prompt here",
value="prompt_1", elem_id=f"prompt-name")
upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True)
record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True)
with gr.Column():
text_output_2 = gr.Textbox(label="Message")
prompt_output_2 = gr.File(interactive=False)
btn_2 = gr.Button("Make!")
btn_2.click(make_npz_prompt,
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2],
outputs=[text_output_2, prompt_output_2])
with gr.Tab("Infer from prompt"):
with gr.Row():
with gr.Column():
textbox_3 = gr.TextArea(label="Text",
placeholder="Type your sentence here",
value="Hello, it's nice to meet you.", elem_id=f"tts-input")
language_dropdown_3 = gr.Dropdown(choices=['English', '中文', '日本語', 'mix'], value='English',
label='language')
accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent',
label='accent')
prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True)
with gr.Column():
text_output_3 = gr.Textbox(label="Message")
audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio")
btn_3 = gr.Button("Generate!")
btn_3.click(infer_from_prompt,
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, prompt_file],
outputs=[text_output_3, audio_output_3])
app.launch()
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main() |