File size: 7,133 Bytes
032c7aa
c396e65
032c7aa
 
 
 
 
ad937a3
032c7aa
ad937a3
 
1a23377
032c7aa
 
 
 
7736fa8
 
 
 
032c7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
1b87171
032c7aa
41433b6
032c7aa
 
41433b6
032c7aa
ffd57e9
032c7aa
 
 
 
 
 
 
1b87171
e90a667
1b87171
 
032c7aa
d4a3403
032c7aa
 
d4a3403
032c7aa
 
 
 
 
 
35677f0
032c7aa
ad937a3
d4a3403
c396e65
 
 
 
d4a3403
 
c396e65
 
 
 
 
 
 
 
 
 
35677f0
c396e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35677f0
c396e65
 
ad937a3
 
 
 
87fbe80
ad937a3
 
 
 
 
 
78b0316
 
 
 
 
 
 
1a23377
d4a3403
 
 
 
ad937a3
 
d4a3403
 
7d550ac
 
 
 
d4a3403
35677f0
ad937a3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import PIL
from captum.attr import GradientShap, Occlusion, LayerGradCam, LayerAttribution, IntegratedGradients
from captum.attr import visualization as viz
import torch
from torchvision import transforms
from matplotlib.colors import LinearSegmentedColormap
import torch.nn.functional as F
import gradio as gr
from torchvision.models import resnet50
import torch.nn as nn
import torch
import numpy as np

class Explainer:
    def __init__(self, model, img, class_names):
        self.model = model
        self.default_cmap = LinearSegmentedColormap.from_list('custom blue', 
                                                [(0, '#ffffff'),
                                                (0.25, '#000000'),
                                                (1, '#000000')], N=256)
        self.class_names = class_names

        transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor()
        ])

        transform_normalize = transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225]
        )

        self.transformed_img = transform(img)

        self.input = transform_normalize(self.transformed_img)
        self.input = self.input.unsqueeze(0)

        with torch.no_grad():
            self.output = self.model(self.input)
            self.output = F.softmax(self.output, dim=1)

        self.confidences = {class_names[i]: float(self.output[0, i]) for i in range(3)}

        self.pred_score, self.pred_label_idx = torch.topk(self.output, 1)
        self.pred_label = self.class_names[self.pred_label_idx]
        self.fig_title = 'Predicted: ' + self.pred_label + ' (' + str(round(self.pred_score.squeeze().item(), 2)) + ')'

    def convert_fig_to_pil(self, fig):
        fig.canvas.draw()
        data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
        data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
        return PIL.Image.fromarray(data)

    def shap(self, n_samples, stdevs):
        gradient_shap = GradientShap(self.model)
        rand_img_dist = torch.cat([self.input * 0, self.input * 1])
        attributions_gs = gradient_shap.attribute(self.input, n_samples=int(n_samples), stdevs=stdevs, baselines=rand_img_dist, target=self.pred_label_idx)
        fig, _ = viz.visualize_image_attr_multiple(np.transpose(attributions_gs.squeeze().cpu().detach().numpy(), (1,2,0)),
                                            np.transpose(self.transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),
                                            ["original_image", "heat_map"],
                                            ["all", "absolute_value"],
                                            cmap=self.default_cmap,
                                            show_colorbar=True)
        fig.suptitle("SHAP | " + self.fig_title, fontsize=12)
        return self.convert_fig_to_pil(fig)

    def occlusion(self, stride, sliding_window):
        occlusion = Occlusion(model)

        attributions_occ = occlusion.attribute(self.input,
                                               target=self.pred_label_idx,
                                               strides=(3, int(stride), int(stride)),
                                               sliding_window_shapes=(3, int(sliding_window), int(sliding_window)),
                                               baselines=0)

        fig, _ = viz.visualize_image_attr_multiple(np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1,2,0)),
                                            np.transpose(self.transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),
                                            ["original_image", "heat_map", "heat_map", "masked_image"],
                                            ["all", "positive", "negative", "positive"],
                                            show_colorbar=True,
                                            titles=["Original", "Positive Attribution", "Negative Attribution", "Masked"],
                                            fig_size=(18, 6)
                                            )
        fig.suptitle("Occlusion | " + self.fig_title, fontsize=12)
        return self.convert_fig_to_pil(fig)
    
    def gradcam(self):
        layer_gradcam = LayerGradCam(self.model, self.model.layer3[1].conv2)
        attributions_lgc = layer_gradcam.attribute(self.input, target=self.pred_label_idx)

        #_ = viz.visualize_image_attr(attributions_lgc[0].cpu().permute(1,2,0).detach().numpy(),
        #                            sign="all",
        #                            title="Layer 3 Block 1 Conv 2")
        upsamp_attr_lgc = LayerAttribution.interpolate(attributions_lgc, self.input.shape[2:])

        fig, _ = viz.visualize_image_attr_multiple(upsamp_attr_lgc[0].cpu().permute(1,2,0).detach().numpy(),
                                            self.transformed_img.permute(1,2,0).numpy(),
                                            ["original_image","blended_heat_map","masked_image"],
                                            ["all","positive","positive"],
                                            show_colorbar=True,
                                            titles=["Original", "Positive Attribution", "Masked"],
                                            fig_size=(18, 6))
        fig.suptitle("GradCAM layer3[1].conv2 | " + self.fig_title, fontsize=12)
        return self.convert_fig_to_pil(fig)

def create_model_from_checkpoint():
    # Loads a model from a checkpoint
    model = resnet50()
    model.fc = nn.Linear(model.fc.in_features, 3)
    model.load_state_dict(torch.load("best_model", map_location=torch.device('cpu')))
    model.eval()
    return model

model = create_model_from_checkpoint()
labels = [ "benign", "malignant", "normal" ]

def predict(gr_inputs):
    img = gr_inputs[0]
    shap_samples = gr_inputs[1]
    shap_stdevs = gr_inputs[2]
    occlusion_stride = gr_inputs[3]
    occlusion_window = gr_inputs[4]
    
    explainer = Explainer(model, img, labels)
    return [explainer.confidences,
            explainer.shap(shap_samples, shap_stdevs),
            explainer.occlusion(occlusion_stride, occlusion_window),
            explainer.gradcam()] 

ui = gr.Interface(fn=predict, 
                inputs=[
                    gr.Image(type="pil"),
                    gr.Slider(minimum=10, maximum=100, default=50, label="SHAP Samples", step=1),
                    gr.Slider(minimum=0.0001, maximum=0.01, default=0.0001, label="SHAP Stdevs", step=0.0001),
                    gr.Slider(minimum=4, maximum=80, default=8, label="Occlusion Stride", step=1),
                    gr.Slider(minimum=4, maximum=80, default=15, label="Occlusion Window", step=1)
                ],
                outputs=[gr.Label(num_top_classes=3), gr.Image(type="pil"), gr.Image(type="pil"), gr.Image(type="pil")],
                examples=["benign (52).png", "benign (243).png", "malignant (127).png", "malignant (201).png", "normal (81).png", "normal (101).png"]).launch()
ui.launch(share=True)