PedroMartelleto commited on
Commit
35677f0
1 Parent(s): c396e65

Deploying to HF

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -62,7 +62,7 @@ class Explainer:
62
  ["all", "absolute_value"],
63
  cmap=self.default_cmap,
64
  show_colorbar=True)
65
- fig.suptitle(self.fig_title, fontsize=12)
66
  return self.convert_fig_to_pil(fig)
67
 
68
  def occlusion(self):
@@ -82,7 +82,7 @@ class Explainer:
82
  titles=["Original", "Positive Attribution", "Negative Attribution", "Masked"],
83
  fig_size=(18, 6)
84
  )
85
- fig.suptitle(self.fig_title, fontsize=12)
86
  return self.convert_fig_to_pil(fig)
87
 
88
  def gradcam(self):
@@ -101,6 +101,7 @@ class Explainer:
101
  show_colorbar=True,
102
  titles=["Original", "Positive Attribution", "Masked"],
103
  fig_size=(18, 6))
 
104
  return self.convert_fig_to_pil(fig)
105
 
106
  def integrated_gradients(self):
@@ -114,7 +115,7 @@ class Explainer:
114
  show_colorbar=True,
115
  titles=["Original", "Attribution", "Masked"],
116
  fig_size=(18, 6))
117
- fig.suptitle(self.fig_title, fontsize=12)
118
  return self.convert_fig_to_pil(fig)
119
 
120
  def create_model_from_checkpoint():
@@ -130,10 +131,10 @@ labels = [ "benign", "malignant", "normal" ]
130
 
131
  def predict(img):
132
  explainer = Explainer(model, img, labels)
133
- return [explainer.confidences, explainer.shap(), explainer.occlusion(), explainer.gradcam(), explainer.integrated_gradients()]
134
 
135
  ui = gr.Interface(fn=predict,
136
  inputs=gr.Image(type="pil"),
137
- outputs=[gr.Label(num_top_classes=3), gr.Image(type="pil"), gr.Image(type="pil"), gr.Image(type="pil"), gr.Image(type="pil")],
138
  examples=["benign (52).png", "benign (243).png", "malignant (127).png", "malignant (201).png", "normal (81).png", "normal (101).png"]).launch()
139
  ui.launch(share=True)
 
62
  ["all", "absolute_value"],
63
  cmap=self.default_cmap,
64
  show_colorbar=True)
65
+ fig.suptitle("SHAP | " + self.fig_title, fontsize=12)
66
  return self.convert_fig_to_pil(fig)
67
 
68
  def occlusion(self):
 
82
  titles=["Original", "Positive Attribution", "Negative Attribution", "Masked"],
83
  fig_size=(18, 6)
84
  )
85
+ fig.suptitle("Occlusion | " + self.fig_title, fontsize=12)
86
  return self.convert_fig_to_pil(fig)
87
 
88
  def gradcam(self):
 
101
  show_colorbar=True,
102
  titles=["Original", "Positive Attribution", "Masked"],
103
  fig_size=(18, 6))
104
+ fig.suptitle("GradCAM layer3[1].conv2 | " + self.fig_title, fontsize=12)
105
  return self.convert_fig_to_pil(fig)
106
 
107
  def integrated_gradients(self):
 
115
  show_colorbar=True,
116
  titles=["Original", "Attribution", "Masked"],
117
  fig_size=(18, 6))
118
+ fig.suptitle("Integrated gradients | " + self.fig_title, fontsize=12)
119
  return self.convert_fig_to_pil(fig)
120
 
121
  def create_model_from_checkpoint():
 
131
 
132
  def predict(img):
133
  explainer = Explainer(model, img, labels)
134
+ return [explainer.confidences, explainer.shap(), explainer.occlusion(), explainer.gradcam()]
135
 
136
  ui = gr.Interface(fn=predict,
137
  inputs=gr.Image(type="pil"),
138
+ outputs=[gr.Label(num_top_classes=3), gr.Image(type="pil"), gr.Image(type="pil"), gr.Image(type="pil")],
139
  examples=["benign (52).png", "benign (243).png", "malignant (127).png", "malignant (201).png", "normal (81).png", "normal (101).png"]).launch()
140
  ui.launch(share=True)