Spaces:
Running
Running
title: README | |
emoji: 📉 | |
colorFrom: yellow | |
colorTo: pink | |
sdk: static | |
pinned: false | |
<h1 align="center"> <h1 align="center"> Learning Adaptive Parallel Reasoning with Language Models</h1></h1> | |
<p align="center"> | |
<a href="https://www.jiayipan.com/" style="text-decoration: none;">Jiayi Pan</a><sup>*</sup>, | |
<a href="https://xiuyuli.com/" style="text-decoration: none;">Xiuyu Li</a><sup>*</sup>, | |
<a href="https://tonylian.com/" style="text-decoration: none;">Long Lian</a><sup>*</sup>, | |
<a href="https://sea-snell.github.io/" style="text-decoration: none;">Charlie Victor Snell</a>, | |
<a href="https://yifeizhou02.github.io/" style="text-decoration: none;">Yifei Zhou</a>,<br> | |
<a href="https://www.adamyala.org/" style="text-decoration: none;">Adam Yala</a>, | |
<a href="https://people.eecs.berkeley.edu/~trevor/" style="text-decoration: none;">Trevor Darrell</a>, | |
<a href="https://people.eecs.berkeley.edu/~keutzer/" style="text-decoration: none;">Kurt Keutzer</a>, | |
<a href="https://www.alanesuhr.com/" style="text-decoration: none;">Alane Suhr</a> | |
</p> | |
<p align="center"> | |
UC Berkeley and UCSF <sup>*</sup> Equal Contribution | |
</p> | |
<p align="center"> | |
<a href="https://arxiv.org/abs/2504.15466">📃 Paper</a> | |
• | |
<a href="https://github.com/Parallel-Reasoning/APR" >💻 Code</a> | |
• | |
<a href="https://huggingface.co/Parallel-Reasoning" >🤗 Data & Models</a> | |
</p> | |
 | |
**TL;DR**: | |
We present Adaptive Parallel Reasoning (APR), a novel framework that enables language models to learn to orchestrate both serialized and parallel computations. APR trains language models to use `spawn()` and `join()` operations through end-to-end supervised training and reinforcement learning, allowing models to dynamically orchestrate their own computational workflows. | |
APR efficiently distributes compute, reduces latency, overcomes context window limits, and achieves state‑of‑the‑art performance on complex reasoning tasks (e.g., 83.4% vs. 60.0% accuracy at 4K context on Countdown). |