CAMELSDocBot / worker.py
PabloVD's picture
fixes
127f3c4
raw
history blame
4.07 kB
import torch
from langchain.chains import RetrievalQA
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEndpoint
# import pip
# def install(package):
# if hasattr(pip, 'main'):
# pip.main(['install', package])
# else:
# pip._internal.main(['install', package])
# # Temporal fix for incompatibility between langchain_huggingface and sentence-transformers<2.6
# install("sentence-transformers==2.2.2")
# Check for GPU availability and set the appropriate device for computation.
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# DEVICE = "cpu"
# Global variables
conversation_retrieval_chain = None
chat_history = []
llm_hub = None
embeddings = None
# Function to initialize the language model and its embeddings
def init_llm():
global llm_hub, embeddings
# Set up the environment variable for HuggingFace and initialize the desired model.
# tokenfile = open("api_token.txt")
# api_token = tokenfile.readline().replace("\n","")
# tokenfile.close()
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
# repo name for the model
# model_id = "tiiuae/falcon-7b-instruct"
model_id = "microsoft/Phi-3.5-mini-instruct"
# model_id = "meta-llama/Llama-3.2-1B-Instruct"
# model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
# load the model into the HuggingFaceHub
llm_hub = HuggingFaceEndpoint(repo_id=model_id, temperature=0.1, max_new_tokens=600, model_kwargs={"max_length":600})
llm_hub.client.api_url = 'https://api-inference.huggingface.co/models/'+model_id
# llm_hub.invoke('foo bar')
#Initialize embeddings using a pre-trained model to represent the text data.
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
embeddings = HuggingFaceInstructEmbeddings(
model_name=embedddings_model,
model_kwargs={"device": DEVICE}
)
# Function to process a PDF document
def process_document(document_path):
global conversation_retrieval_chain
# Load the document
loader = PyPDFLoader(document_path)
documents = loader.load()
# Split the document into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
texts = text_splitter.split_documents(documents)
# Create an embeddings database using Chroma from the split text chunks.
db = Chroma.from_documents(texts, embedding=embeddings)
# --> Build the QA chain, which utilizes the LLM and retriever for answering questions.
# By default, the vectorstore retriever uses similarity search.
# If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type (search_type="mmr").
# You can also specify search kwargs like k to use when doing retrieval. k represent how many search results send to llm
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25})
conversation_retrieval_chain = RetrievalQA.from_chain_type(
llm=llm_hub,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
input_key = "question"
# chain_type_kwargs={"prompt": prompt} # if you are using prompt template, you need to uncomment this part
)
# Function to process a user prompt
def process_prompt(prompt, chat_history):
global conversation_retrieval_chain
# global chat_history
# Query the model
output = conversation_retrieval_chain.invoke({"question": prompt, "chat_history": chat_history})
answer = output["result"]
# Update the chat history
chat_history.append((prompt, answer))
# Return the model's response
return answer
# Initialize the language model
init_llm()