Spaces:
Running
Running
fixes
Browse files- app.py +1 -1
- requirements.txt +5 -0
- worker.py +9 -11
app.py
CHANGED
@@ -10,7 +10,7 @@ url = 'https://camels.readthedocs.io/_/downloads/en/latest/pdf/'
|
|
10 |
r = requests.get(url, stream=True)
|
11 |
document_path = Path('metadata.pdf')
|
12 |
document_path.write_bytes(r.content)
|
13 |
-
|
14 |
worker.process_document(document_path)
|
15 |
|
16 |
def handle_prompt(message, history):
|
|
|
10 |
r = requests.get(url, stream=True)
|
11 |
document_path = Path('metadata.pdf')
|
12 |
document_path.write_bytes(r.content)
|
13 |
+
# document_path="2022GS.pdf"
|
14 |
worker.process_document(document_path)
|
15 |
|
16 |
def handle_prompt(message, history):
|
requirements.txt
CHANGED
@@ -1,4 +1,9 @@
|
|
|
|
|
|
|
|
1 |
langchain
|
2 |
langchain-community
|
3 |
langchain-huggingface
|
4 |
chromadb
|
|
|
|
|
|
1 |
+
pdf2image
|
2 |
+
pypdf
|
3 |
+
tiktoken
|
4 |
langchain
|
5 |
langchain-community
|
6 |
langchain-huggingface
|
7 |
chromadb
|
8 |
+
InstructorEmbedding
|
9 |
+
huggingface_hub==0.25.2
|
worker.py
CHANGED
@@ -5,20 +5,20 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
-
|
9 |
-
import pip
|
10 |
|
11 |
-
def install(package):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
# Temporal fix for incompatibility between langchain_huggingface and sentence-transformers<2.6
|
18 |
# install("sentence-transformers==2.2.2")
|
19 |
|
20 |
# Check for GPU availability and set the appropriate device for computation.
|
21 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
22 |
|
23 |
# Global variables
|
24 |
conversation_retrieval_chain = None
|
@@ -49,11 +49,9 @@ def init_llm():
|
|
49 |
#Initialize embeddings using a pre-trained model to represent the text data.
|
50 |
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
51 |
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
52 |
-
|
53 |
-
emb_model = SentenceTransformer(embedddings_model)
|
54 |
|
55 |
embeddings = HuggingFaceInstructEmbeddings(
|
56 |
-
model_name=
|
57 |
model_kwargs={"device": DEVICE}
|
58 |
)
|
59 |
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
+
# import pip
|
|
|
9 |
|
10 |
+
# def install(package):
|
11 |
+
# if hasattr(pip, 'main'):
|
12 |
+
# pip.main(['install', package])
|
13 |
+
# else:
|
14 |
+
# pip._internal.main(['install', package])
|
15 |
|
16 |
+
# # Temporal fix for incompatibility between langchain_huggingface and sentence-transformers<2.6
|
17 |
# install("sentence-transformers==2.2.2")
|
18 |
|
19 |
# Check for GPU availability and set the appropriate device for computation.
|
20 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
21 |
+
# DEVICE = "cpu"
|
22 |
|
23 |
# Global variables
|
24 |
conversation_retrieval_chain = None
|
|
|
49 |
#Initialize embeddings using a pre-trained model to represent the text data.
|
50 |
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
51 |
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
|
|
52 |
|
53 |
embeddings = HuggingFaceInstructEmbeddings(
|
54 |
+
model_name=embedddings_model,
|
55 |
model_kwargs={"device": DEVICE}
|
56 |
)
|
57 |
|