File size: 7,498 Bytes
fd2d5c8
 
 
 
 
99e8b58
 
 
 
 
 
fd2d5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e8b58
 
 
 
 
 
fd2d5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e8b58
fd2d5c8
99e8b58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import warnings

import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import streamlit as st
from transformers import (
    AutoModelForTokenClassification,
    AutoTokenizer,
    logging,
    pipeline,
)

warnings.simplefilter(action="ignore", category=Warning)
logging.set_verbosity(logging.ERROR)

st.set_page_config(page_title="CAROLL Language Models - Demo", layout="wide")

st.markdown(
    """
    <style>
        body {
            font-family: 'Poppins', sans-serif;
            background-color: #f4f4f8;
        }
        .header {
            background-color: rgba(220, 219, 219, 0.25);
            color: #000;
            padding: 5px 0;
            text-align: center;
            border-radius: 7px;
            margin-bottom: 13px;
            border-bottom: 2px solid #333;
        }
        #logo {
            width: auto;
            height: 75px;
            margin-top: -15px;
            margin-bottom: 15px;
        }
        .container {
            background-color: #fff;
            padding: 30px;
            border-radius: 10px;
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
            width: 100%;
            max-width: 1000px;
            margin: 0 auto;
            position: absolute;
            top: 50%;
            left: 50%;
            transform: translate(-50%, -50%);
        }
        .btn-primary {
            background-color: #5477d1;
            border: none;
            transition: background-color 0.3s, transform 0.2s;
            border-radius: 25px;
            box-shadow: 0 1px 3px rgba(0, 0, 0, 0.08);
        }
        .btn-primary:hover {
            background-color: #4c6cbe;
            transform: translateY(-1px);
        }
        h2 {
            font-weight: 600;
            font-size: 24px;
            margin-bottom: 20px;
        }
        h4 {
            font-weight: 500;
            font-size: 15px;
            margin-top: 15px;
            margin-bottom: 15px;
        }
        label {
            font-weight: 500;
        }
        .tip {
            background-color: rgba(220, 219, 219, 0.25);
            padding: 5px;
            border-radius: 7px;
            display: inline-block;
        }
    </style>
""",
    unsafe_allow_html=True,
)

st.markdown(
    """
    <div class="header">
        <img src="https://raw.githubusercontent.com/ca-roll/ca-roll.github.io/release/images/logopic/caroll.png" alt="Research Group Logo" id="logo">
        <h4>Demonstrating <a href="https://ca-roll.github.io/" target="_blank">CAROLL Research Group</a>'s Language Models</h4>
    </div>
""",
    unsafe_allow_html=True,
)

# Initialization for Legal NER
tokenizer_legal = AutoTokenizer.from_pretrained("PaDaS-Lab/gbert-legal-ner")
model_legal = AutoModelForTokenClassification.from_pretrained(
    "PaDaS-Lab/gbert-legal-ner"
)
ner_legal = pipeline("ner", model=model_legal, tokenizer=tokenizer_legal)

# Initialization for GDPR Privacy Policy NER
tokenizer_gdpr = AutoTokenizer.from_pretrained("PaDaS-Lab/gdpr-privacy-policy-ner")
model_gdpr = AutoModelForTokenClassification.from_pretrained(
    "PaDaS-Lab/gdpr-privacy-policy-ner"
)
ner_gdpr = pipeline("ner", model=model_gdpr, tokenizer=tokenizer_gdpr)

# Define class labels for Legal and GDPR NER models
classes_legal = {
    "AN": "Lawyer",
    "EUN": "European legal norm",
    "GRT": "Court",
    "GS": "Law",
    "INN": "Institution",
    "LD": "Country",
    "LDS": "Landscape",
    "LIT": "Legal literature",
    "MRK": "Brand",
    "ORG": "Organization",
    "PER": "Person",
    "RR": "Judge",
    "RS": "Court decision",
    "ST": "City",
    "STR": "Street",
    "UN": "Company",
    "VO": "Ordinance",
    "VS": "Regulation",
    "VT": "Contract",
}
classes_gdpr = {
    "DC": "Data Controller",
    "DP": "Data Processor",
    "DPO": "Data Protection Officer",
    "R": "Recipient",
    "TP": "Third Party",
    "A": "Authority",
    "DS": "Data Subject",
    "DSO": "Data Source",
    "RP": "Required Purpose",
    "NRP": "Not-Required Purpose",
    "P": "Processing",
    "NPD": "Non-Personal Data",
    "PD": "Personal Data",
    "OM": "Organisational Measure",
    "TM": "Technical Measure",
    "LB": "Legal Basis",
    "CONS": "Consent",
    "CONT": "Contract",
    "LI": "Legitimate Interest",
    "ADM": "Automated Decision Making",
    "RET": "Retention",
    "SEU": "Scale EU",
    "SNEU": "Scale Non-EU",
    "RI": "Right",
    "DSR15": "Art. 15 Right of access by the data subject",
    "DSR16": "Art. 16 Right to rectification",
    "DSR17": "Art. 17 Right to erasure (‘right to be forgotten’)",
    "DSR18": "Art. 18 Right to restriction of processing",
    "DSR19": "Art. 19 Notification obligation regarding rectification or erasure of personal data or restriction of processing",
    "DSR20": "Art. 20 Right to data portability",
    "DSR21": "Art. 21 Right to object",
    "DSR22": "Art. 22 Automated individual decision-making, including profiling",
    "LC": "Lodge Complaint",
}

# Extract the keys (labels) from the class dictionaries
ner_labels_legal = list(classes_legal.keys())
ner_labels_gdpr = list(classes_gdpr.keys())


# Function to generate a list of colors for visualization
def generate_colors(num_colors):
    cm = plt.get_cmap("tab20")
    colors = [mcolors.rgb2hex(cm(1.0 * i / num_colors)) for i in range(num_colors)]
    return colors


# Function to color substrings based on NER results
def color_substrings(input_string, model_output, ner_labels, current_classes):
    colors = generate_colors(len(ner_labels))
    label_to_color = {
        label: colors[i % len(colors)] for i, label in enumerate(ner_labels)
    }

    last_end = 0
    html_output = ""

    for entity in sorted(model_output, key=lambda x: x["start"]):
        start, end, label = entity["start"], entity["end"], entity["label"]
        html_output += input_string[last_end:start]
        tooltip = current_classes.get(label, "")
        html_output += f'<span style="color: {label_to_color.get(label)}; font-weight: bold;" title="{tooltip}">{input_string[start:end]}</span>'
        last_end = end

    html_output += input_string[last_end:]

    return html_output


st.title("CAROLL Language Models - Demo")
st.markdown("<hr>", unsafe_allow_html=True)

test_sentence = st.text_area("Enter Text:", height=200)
model_choice = st.selectbox(
    "Choose a model:", ["Legal NER", "GDPR Privacy Policy NER"], index=0
)

if st.button("Analyze"):
    if model_choice == "Legal NER":
        ner_model = ner_legal
        current_classes = classes_legal
        current_ner_labels = ner_labels_legal
    else:
        ner_model = ner_gdpr
        current_classes = classes_gdpr
        current_ner_labels = ner_labels_gdpr

    results = ner_model(test_sentence)
    processed_results = [
        {
            "start": result["start"],
            "end": result["end"],
            "label": result["entity"].split("-")[-1],
        }
        for result in results
    ]

    colored_html = color_substrings(
        test_sentence, processed_results, current_ner_labels, current_classes
    )

    st.markdown(
        "<strong>- Original text -</strong><br><br>{}".format(test_sentence),
        unsafe_allow_html=True,
    )
    st.markdown(
        "<strong>- Analyzed text -</strong><br><br>{}".format(colored_html),
        unsafe_allow_html=True,
    )
    st.markdown(
        '<div class="tip"><strong>Tip:</strong> Hover over the colored words to see its class.</div>',
        unsafe_allow_html=True,
    )