harshildarji
commited on
Commit
•
fd2d5c8
1
Parent(s):
b7424f7
add app
Browse files
app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import matplotlib.colors as mcolors
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from transformers import (
|
6 |
+
AutoModelForTokenClassification,
|
7 |
+
AutoTokenizer,
|
8 |
+
logging,
|
9 |
+
pipeline,
|
10 |
+
)
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
warnings.simplefilter(action="ignore", category=Warning)
|
15 |
+
logging.set_verbosity(logging.ERROR)
|
16 |
+
|
17 |
+
st.set_page_config(page_title="CAROLL Language Models - Demo", layout="wide")
|
18 |
+
|
19 |
+
st.markdown(
|
20 |
+
"""
|
21 |
+
<style>
|
22 |
+
body {
|
23 |
+
font-family: 'Poppins', sans-serif;
|
24 |
+
background-color: #f4f4f8;
|
25 |
+
}
|
26 |
+
.header {
|
27 |
+
background-color: rgba(220, 219, 219, 0.25);
|
28 |
+
color: #000;
|
29 |
+
padding: 5px 0;
|
30 |
+
text-align: center;
|
31 |
+
border-radius: 7px;
|
32 |
+
margin-bottom: 13px;
|
33 |
+
border-bottom: 2px solid #333;
|
34 |
+
}
|
35 |
+
#logo {
|
36 |
+
width: auto;
|
37 |
+
height: 75px;
|
38 |
+
margin-top: -15px;
|
39 |
+
margin-bottom: 15px;
|
40 |
+
}
|
41 |
+
.container {
|
42 |
+
background-color: #fff;
|
43 |
+
padding: 30px;
|
44 |
+
border-radius: 10px;
|
45 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
46 |
+
width: 100%;
|
47 |
+
max-width: 1000px;
|
48 |
+
margin: 0 auto;
|
49 |
+
position: absolute;
|
50 |
+
top: 50%;
|
51 |
+
left: 50%;
|
52 |
+
transform: translate(-50%, -50%);
|
53 |
+
}
|
54 |
+
.btn-primary {
|
55 |
+
background-color: #5477d1;
|
56 |
+
border: none;
|
57 |
+
transition: background-color 0.3s, transform 0.2s;
|
58 |
+
border-radius: 25px;
|
59 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.08);
|
60 |
+
}
|
61 |
+
.btn-primary:hover {
|
62 |
+
background-color: #4c6cbe;
|
63 |
+
transform: translateY(-1px);
|
64 |
+
}
|
65 |
+
h2 {
|
66 |
+
font-weight: 600;
|
67 |
+
font-size: 24px;
|
68 |
+
margin-bottom: 20px;
|
69 |
+
}
|
70 |
+
h4 {
|
71 |
+
font-weight: 500;
|
72 |
+
font-size: 15px;
|
73 |
+
margin-top: 15px;
|
74 |
+
margin-bottom: 15px;
|
75 |
+
}
|
76 |
+
label {
|
77 |
+
font-weight: 500;
|
78 |
+
}
|
79 |
+
</style>
|
80 |
+
""",
|
81 |
+
unsafe_allow_html=True,
|
82 |
+
)
|
83 |
+
|
84 |
+
st.markdown(
|
85 |
+
"""
|
86 |
+
<div class="header">
|
87 |
+
<img src="https://raw.githubusercontent.com/ca-roll/ca-roll.github.io/release/images/logopic/caroll.png" alt="Research Group Logo" id="logo">
|
88 |
+
<h4>Demonstrating <a href="https://ca-roll.github.io/" target="_blank">CAROLL Research Group</a>'s Language Models</h4>
|
89 |
+
</div>
|
90 |
+
""",
|
91 |
+
unsafe_allow_html=True,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Initialization for Legal NER
|
95 |
+
tokenizer_legal = AutoTokenizer.from_pretrained("PaDaS-Lab/gbert-legal-ner")
|
96 |
+
model_legal = AutoModelForTokenClassification.from_pretrained(
|
97 |
+
"PaDaS-Lab/gbert-legal-ner"
|
98 |
+
)
|
99 |
+
ner_legal = pipeline("ner", model=model_legal, tokenizer=tokenizer_legal)
|
100 |
+
|
101 |
+
# Initialization for GDPR Privacy Policy NER
|
102 |
+
tokenizer_gdpr = AutoTokenizer.from_pretrained("PaDaS-Lab/gdpr-privacy-policy-ner")
|
103 |
+
model_gdpr = AutoModelForTokenClassification.from_pretrained(
|
104 |
+
"PaDaS-Lab/gdpr-privacy-policy-ner"
|
105 |
+
)
|
106 |
+
ner_gdpr = pipeline("ner", model=model_gdpr, tokenizer=tokenizer_gdpr)
|
107 |
+
|
108 |
+
# Define class labels for Legal and GDPR NER models
|
109 |
+
classes_legal = {
|
110 |
+
"AN": "Lawyer",
|
111 |
+
"EUN": "European legal norm",
|
112 |
+
"GRT": "Court",
|
113 |
+
"GS": "Law",
|
114 |
+
"INN": "Institution",
|
115 |
+
"LD": "Country",
|
116 |
+
"LDS": "Landscape",
|
117 |
+
"LIT": "Legal literature",
|
118 |
+
"MRK": "Brand",
|
119 |
+
"ORG": "Organization",
|
120 |
+
"PER": "Person",
|
121 |
+
"RR": "Judge",
|
122 |
+
"RS": "Court decision",
|
123 |
+
"ST": "City",
|
124 |
+
"STR": "Street",
|
125 |
+
"UN": "Company",
|
126 |
+
"VO": "Ordinance",
|
127 |
+
"VS": "Regulation",
|
128 |
+
"VT": "Contract",
|
129 |
+
}
|
130 |
+
classes_gdpr = {
|
131 |
+
"DC": "Data Controller",
|
132 |
+
"DP": "Data Processor",
|
133 |
+
"DPO": "Data Protection Officer",
|
134 |
+
"R": "Recipient",
|
135 |
+
"TP": "Third Party",
|
136 |
+
"A": "Authority",
|
137 |
+
"DS": "Data Subject",
|
138 |
+
"DSO": "Data Source",
|
139 |
+
"RP": "Required Purpose",
|
140 |
+
"NRP": "Not-Required Purpose",
|
141 |
+
"P": "Processing",
|
142 |
+
"NPD": "Non-Personal Data",
|
143 |
+
"PD": "Personal Data",
|
144 |
+
"OM": "Organisational Measure",
|
145 |
+
"TM": "Technical Measure",
|
146 |
+
"LB": "Legal Basis",
|
147 |
+
"CONS": "Consent",
|
148 |
+
"CONT": "Contract",
|
149 |
+
"LI": "Legitimate Interest",
|
150 |
+
"ADM": "Automated Decision Making",
|
151 |
+
"RET": "Retention",
|
152 |
+
"SEU": "Scale EU",
|
153 |
+
"SNEU": "Scale Non-EU",
|
154 |
+
"RI": "Right",
|
155 |
+
"DSR15": "Art. 15 Right of access by the data subject",
|
156 |
+
"DSR16": "Art. 16 Right to rectification",
|
157 |
+
"DSR17": "Art. 17 Right to erasure (‘right to be forgotten’)",
|
158 |
+
"DSR18": "Art. 18 Right to restriction of processing",
|
159 |
+
"DSR19": "Art. 19 Notification obligation regarding rectification or erasure of personal data or restriction of processing",
|
160 |
+
"DSR20": "Art. 20 Right to data portability",
|
161 |
+
"DSR21": "Art. 21 Right to object",
|
162 |
+
"DSR22": "Art. 22 Automated individual decision-making, including profiling",
|
163 |
+
"LC": "Lodge Complaint",
|
164 |
+
}
|
165 |
+
|
166 |
+
# Extract the keys (labels) from the class dictionaries
|
167 |
+
ner_labels_legal = list(classes_legal.keys())
|
168 |
+
ner_labels_gdpr = list(classes_gdpr.keys())
|
169 |
+
|
170 |
+
|
171 |
+
# Function to generate a list of colors for visualization
|
172 |
+
def generate_colors(num_colors):
|
173 |
+
cm = plt.get_cmap("tab20")
|
174 |
+
colors = [mcolors.rgb2hex(cm(1.0 * i / num_colors)) for i in range(num_colors)]
|
175 |
+
return colors
|
176 |
+
|
177 |
+
|
178 |
+
# Function to color substrings based on NER results
|
179 |
+
def color_substrings(input_string, model_output, ner_labels, current_classes):
|
180 |
+
colors = generate_colors(len(ner_labels))
|
181 |
+
label_to_color = {
|
182 |
+
label: colors[i % len(colors)] for i, label in enumerate(ner_labels)
|
183 |
+
}
|
184 |
+
|
185 |
+
last_end = 0
|
186 |
+
html_output = ""
|
187 |
+
|
188 |
+
for entity in sorted(model_output, key=lambda x: x["start"]):
|
189 |
+
start, end, label = entity["start"], entity["end"], entity["label"]
|
190 |
+
html_output += input_string[last_end:start]
|
191 |
+
tooltip = current_classes.get(label, "")
|
192 |
+
html_output += f'<span style="color: {label_to_color.get(label)}; font-weight: bold;" title="{tooltip}">{input_string[start:end]}</span>'
|
193 |
+
last_end = end
|
194 |
+
|
195 |
+
html_output += input_string[last_end:]
|
196 |
+
|
197 |
+
return html_output
|
198 |
+
|
199 |
+
|
200 |
+
st.title("CAROLL Language Models - Demo")
|
201 |
+
st.markdown("<hr>", unsafe_allow_html=True)
|
202 |
+
|
203 |
+
test_sentence = st.text_area("Enter Text:", height=200)
|
204 |
+
model_choice = st.selectbox(
|
205 |
+
"Choose a model:", ["Legal NER", "GDPR Privacy Policy NER"], index=0
|
206 |
+
)
|
207 |
+
|
208 |
+
if st.button("Analyze"):
|
209 |
+
if model_choice == "Legal NER":
|
210 |
+
ner_model = ner_legal
|
211 |
+
current_classes = classes_legal
|
212 |
+
current_ner_labels = ner_labels_legal
|
213 |
+
else:
|
214 |
+
ner_model = ner_gdpr
|
215 |
+
current_classes = classes_gdpr
|
216 |
+
current_ner_labels = ner_labels_gdpr
|
217 |
+
|
218 |
+
results = ner_model(test_sentence)
|
219 |
+
processed_results = [
|
220 |
+
{
|
221 |
+
"start": result["start"],
|
222 |
+
"end": result["end"],
|
223 |
+
"label": result["entity"].split("-")[-1],
|
224 |
+
}
|
225 |
+
for result in results
|
226 |
+
]
|
227 |
+
|
228 |
+
colored_html = color_substrings(
|
229 |
+
test_sentence, processed_results, current_ner_labels, current_classes
|
230 |
+
)
|
231 |
+
|
232 |
+
st.markdown(
|
233 |
+
"<strong>- Original text -</strong><br><br>{}".format(test_sentence),
|
234 |
+
unsafe_allow_html=True,
|
235 |
+
)
|
236 |
+
st.markdown(
|
237 |
+
"<strong>- Analyzed text -</strong><br><br>{}".format(colored_html),
|
238 |
+
unsafe_allow_html=True,
|
239 |
+
)
|
240 |
+
st.markdown(
|
241 |
+
"<mark><strong>Tip:</strong> Hover over the colored words to see its class.</mark>",
|
242 |
+
unsafe_allow_html=True,
|
243 |
+
)
|