PRAli22's picture
Create app.py
04272f7
raw
history blame
1.74 kB
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("PRAli22/arat5-base-arabic-dialects-translation" )
model = AutoModelForSeq2SeqLM.from_pretrained("PRAli22/arat5-base-arabic-dialects-translation")
class Translator:
def __init__(self, model:AutoModelForSeq2SeqLM, tokenizer:AutoTokenizer):
self.model = model
self.tokenizer = tokenizer
def translate(self, source:str) -> str:
encoding = self.tokenizer.encode_plus(source, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
outputs = self.model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
do_sample=True,
top_k=120,
top_p=0.95,
early_stopping=True,
num_return_sequences=1
)
translation = self.tokenizer.decode(outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
return translation
translator = Translator(model, tokenizer)
translation = translator.translate()
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}'
demo = gr.Interface(
fn=translation,
inputs=
gr.Textbox(label="text", placeholder="Enter the text "),
outputs=gr.Textbox(label="summary"),
title="Text Summarizer",
description= "This is Text Summarizer System, it takes a text in English as inputs and returns it's summary",
css = css_code
)
demo.launch()