from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr tokenizer = AutoTokenizer.from_pretrained("PRAli22/arat5-base-arabic-dialects-translation" ) model = AutoModelForSeq2SeqLM.from_pretrained("PRAli22/arat5-base-arabic-dialects-translation") class Translator: def __init__(self, model:AutoModelForSeq2SeqLM, tokenizer:AutoTokenizer): self.model = model self.tokenizer = tokenizer def translate(self, source:str) -> str: encoding = self.tokenizer.encode_plus(source, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"] outputs = self.model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=1 ) translation = self.tokenizer.decode(outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) return translation translator = Translator(model, tokenizer) translation = translator.translate() css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}' demo = gr.Interface( fn=translation, inputs= gr.Textbox(label="text", placeholder="Enter the text "), outputs=gr.Textbox(label="summary"), title="Text Summarizer", description= "This is Text Summarizer System, it takes a text in English as inputs and returns it's summary", css = css_code ) demo.launch()