Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("PRAli22/arat5-base-arabic-dialects-translation" )
|
5 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("PRAli22/arat5-base-arabic-dialects-translation")
|
6 |
+
|
7 |
+
class Translator:
|
8 |
+
def __init__(self, model:AutoModelForSeq2SeqLM, tokenizer:AutoTokenizer):
|
9 |
+
self.model = model
|
10 |
+
self.tokenizer = tokenizer
|
11 |
+
|
12 |
+
def translate(self, source:str) -> str:
|
13 |
+
|
14 |
+
encoding = self.tokenizer.encode_plus(source, pad_to_max_length=True, return_tensors="pt")
|
15 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
16 |
+
outputs = self.model.generate(
|
17 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
18 |
+
max_length=256,
|
19 |
+
do_sample=True,
|
20 |
+
top_k=120,
|
21 |
+
top_p=0.95,
|
22 |
+
early_stopping=True,
|
23 |
+
num_return_sequences=1
|
24 |
+
)
|
25 |
+
translation = self.tokenizer.decode(outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
26 |
+
return translation
|
27 |
+
|
28 |
+
|
29 |
+
translator = Translator(model, tokenizer)
|
30 |
+
|
31 |
+
translation = translator.translate()
|
32 |
+
|
33 |
+
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}'
|
34 |
+
|
35 |
+
demo = gr.Interface(
|
36 |
+
fn=translation,
|
37 |
+
inputs=
|
38 |
+
gr.Textbox(label="text", placeholder="Enter the text "),
|
39 |
+
|
40 |
+
outputs=gr.Textbox(label="summary"),
|
41 |
+
title="Text Summarizer",
|
42 |
+
description= "This is Text Summarizer System, it takes a text in English as inputs and returns it's summary",
|
43 |
+
css = css_code
|
44 |
+
)
|
45 |
+
|
46 |
+
demo.launch()
|
47 |
+
|