Omnibus's picture
Update app.py
b002a87
raw
history blame
8.14 kB
import gradio as gr
#import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
api=HfApi()
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def find_all(url):
return_list=[]
print (url)
#if action_input in query.tasks:
print (f"trying URL:: {url}")
try:
if url != "" and url != None:
out = []
source = requests.get(url)
#source = urllib.request.urlopen(url).read()
soup = bs4.BeautifulSoup(source.content,'lxml')
# title of the page
print(soup.title)
# get attributes:
print(soup.title.name)
# get values:
print(soup.title.string)
# beginning navigation:
print(soup.title.parent.name)
#rawp.append([tag.name for tag in soup.find_all()] )
print([tag.name for tag in soup.find_all()])
#rawp=(f'RAW TEXT RETURNED: {soup.text}')
rawp=(f'RAW HTML RETURNED: {soup}')
out.append(rawp)
q=("a","p","span","content","article")
for p in soup.find_all(q):
out.append([{q:p.string,"parent":p.parent.name,"previous":[p.previous],"first-child":[b.name for b in p.children],"content":p}])
#print (f'OUT :: {out}')
'''
c=0
out = str(out)
rl = len(out)
print(f'rl:: {rl}')
#for ea in out:
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
if rl > MAX_DATA:
print("compressing...")
rawp = compress_data(c,purpose,task,out)
print (rawp)
print (f'out:: {out}')
'''
print(rawp)
return True, rawp
else:
return False, "Enter Valid URL"
except Exception as e:
print (e)
return False, f'Error: {e}'
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task
def read_txt(txt_path):
text=""
with open(txt_path,"r") as f:
text = f.read()
f.close()
print (text)
return text
def read_pdf(pdf_path):
from pypdf import PdfReader
text=""
reader = PdfReader(f'{pdf_path}')
number_of_pages = len(reader.pages)
for i in range(number_of_pages-1):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print (text)
return text
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 25000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=4096,
seed=seed,
direction=instruct,
knowledge=new_history,
history=hist,
)
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history="All data has been recieved.",
)
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def summarize(inp,history,data=None,file=None,url=None):
if inp == "":
inp = "Process this data"
history.clear()
history = [(inp,"Working on it...")]
yield "",history
if url != "":
val, out = find_all(url)
if not val:
data="Error"
rawp = str(out)
else:
data=out
if file:
try:
print (file)
if file.endswith(".pdf"):
zz=read_pdf(file)
print (zz)
data=f'{data}\nFile:\n{zz}'
elif file.endswith(".txt"):
zz=read_txt(file)
print (zz)
data=f'{data}\nFile:\n{zz}'
except Exception as e:
data = "Error"
print (e)
if not data == "Error":
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
rawp = compress_data(c,inp,out)
else:
rawp = "Error"
#print (rawp)
#print (f'out:: {out}')
#history += "observation: the search results are:\n {}\n".format(out)
#task = "complete?"
history.clear()
history.append((inp,rawp))
yield "", history
#################################
def clear_fn():
return "",[(None,None)]
with gr.Blocks() as app:
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer</h1><h3>Summarize Data of unlimited length</h3>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox(label = "Instructions (optional)")
with gr.Column(scale=1):
button=gr.Button()
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
with gr.Tab("Text"):
data=gr.Textbox(label="Input Data (paste text)", lines=6)
with gr.Tab("File"):
file=gr.File(label="Input File (.pdf .txt)")
with gr.Tab("URL"):
url = gr.Textbox(label="URL")
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
clear_btn.click(clear_fn,None,[prompt,chatbot])
go=button.click(summarize,[prompt,chatbot,data,file,url],[prompt,chatbot])
stop_button.click(None,None,None,cancels=[go])
app.launch(server_port=7860,show_api=False)