Spaces:
Runtime error
Runtime error
File size: 8,138 Bytes
e1f356a 86332dd 835026c e1f356a 86332dd e1f356a 7e4fb7d 4ebd713 7e4fb7d 4cde5ef dbc3d8f 7e4fb7d aedba51 7e4fb7d d87354d 46cc42f 9df3294 46cc42f 9df3294 46cc42f e1f356a fa221ab e1f356a 9d003fe e1f356a 15d9ca5 e1f356a 3e1467e e1f356a 37e985c e1f356a 47f0019 e1f356a 15d9ca5 e1f356a 86332dd e1f356a c3d04a2 e1f356a 15d9ca5 e1f356a 86332dd e1f356a 3e1467e e1f356a 7e4fb7d 33fa1b3 b002a87 33fa1b3 7e4fb7d 4cde5ef 7e4fb7d 8fac38f 33fa1b3 dbc3d8f 33fa1b3 d87354d 33fa1b3 e1f356a 7f6ba54 2f373b5 fa221ab e1f356a 7f6ba54 05d25f5 e1f356a 05d25f5 7f6ba54 05d25f5 e1f356a 05d25f5 da0e32f 3e662a4 05d25f5 7f6ba54 3e662a4 e1f356a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import gradio as gr
#import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
api=HfApi()
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def find_all(url):
return_list=[]
print (url)
#if action_input in query.tasks:
print (f"trying URL:: {url}")
try:
if url != "" and url != None:
out = []
source = requests.get(url)
#source = urllib.request.urlopen(url).read()
soup = bs4.BeautifulSoup(source.content,'lxml')
# title of the page
print(soup.title)
# get attributes:
print(soup.title.name)
# get values:
print(soup.title.string)
# beginning navigation:
print(soup.title.parent.name)
#rawp.append([tag.name for tag in soup.find_all()] )
print([tag.name for tag in soup.find_all()])
#rawp=(f'RAW TEXT RETURNED: {soup.text}')
rawp=(f'RAW HTML RETURNED: {soup}')
out.append(rawp)
q=("a","p","span","content","article")
for p in soup.find_all(q):
out.append([{q:p.string,"parent":p.parent.name,"previous":[p.previous],"first-child":[b.name for b in p.children],"content":p}])
#print (f'OUT :: {out}')
'''
c=0
out = str(out)
rl = len(out)
print(f'rl:: {rl}')
#for ea in out:
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
if rl > MAX_DATA:
print("compressing...")
rawp = compress_data(c,purpose,task,out)
print (rawp)
print (f'out:: {out}')
'''
print(rawp)
return True, rawp
else:
return False, "Enter Valid URL"
except Exception as e:
print (e)
return False, f'Error: {e}'
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task
def read_txt(txt_path):
text=""
with open(txt_path,"r") as f:
text = f.read()
f.close()
print (text)
return text
def read_pdf(pdf_path):
from pypdf import PdfReader
text=""
reader = PdfReader(f'{pdf_path}')
number_of_pages = len(reader.pages)
for i in range(number_of_pages-1):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print (text)
return text
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 25000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=4096,
seed=seed,
direction=instruct,
knowledge=new_history,
history=hist,
)
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history="All data has been recieved.",
)
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def summarize(inp,history,data=None,file=None,url=None):
if inp == "":
inp = "Process this data"
history.clear()
history = [(inp,"Working on it...")]
yield "",history
if url != "":
val, out = find_all(url)
if not val:
data="Error"
rawp = str(out)
else:
data=out
if file:
try:
print (file)
if file.endswith(".pdf"):
zz=read_pdf(file)
print (zz)
data=f'{data}\nFile:\n{zz}'
elif file.endswith(".txt"):
zz=read_txt(file)
print (zz)
data=f'{data}\nFile:\n{zz}'
except Exception as e:
data = "Error"
print (e)
if not data == "Error":
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
rawp = compress_data(c,inp,out)
else:
rawp = "Error"
#print (rawp)
#print (f'out:: {out}')
#history += "observation: the search results are:\n {}\n".format(out)
#task = "complete?"
history.clear()
history.append((inp,rawp))
yield "", history
#################################
def clear_fn():
return "",[(None,None)]
with gr.Blocks() as app:
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer</h1><h3>Summarize Data of unlimited length</h3>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox(label = "Instructions (optional)")
with gr.Column(scale=1):
button=gr.Button()
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
with gr.Tab("Text"):
data=gr.Textbox(label="Input Data (paste text)", lines=6)
with gr.Tab("File"):
file=gr.File(label="Input File (.pdf .txt)")
with gr.Tab("URL"):
url = gr.Textbox(label="URL")
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
clear_btn.click(clear_fn,None,[prompt,chatbot])
go=button.click(summarize,[prompt,chatbot,data,file,url],[prompt,chatbot])
stop_button.click(None,None,None,cancels=[go])
app.launch(server_port=7860,show_api=False)
|