Og2's picture
Update app.py
6cd3f81 verified
# https://Og2-FoosballAnalytics.hf.space/
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from pathlib import Path
import os
from pydantic import BaseModel
import json
import tensorflow as tf
import numpy as np
import cv2
import keras
from keras.saving import register_keras_serializable
from keras import layers
from huggingface_hub import hf_hub_download
from keras.applications.densenet import DenseNet121
from concurrent.futures import ThreadPoolExecutor
import asyncio
import pandas as pd
from typing import List
from huggingface_hub import HfApi
import requests
import io
import base64
from PIL import Image
#from tensorflow_docs.vis import embed
app = FastAPI()
UPLOAD_DIR = "uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)
@app.post("/upload-dropzone/")
async def upload_file(
file: UploadFile = File(...),
chunkIndex: int = Form(...),
totalChunks: int = Form(...),
fileName: str = Form(...),
directory: str = Form(...),
):
try:
print(f"Received: chunkIndex={chunkIndex}, totalChunks={totalChunks}, fileName={fileName}, directory={directory}")
# Create the directory if it doesn't exist
target_dir = Path(UPLOAD_DIR) / directory
target_dir = target_dir.absolute() # Get the absolute path
target_dir.mkdir(parents=True, exist_ok=True)
# Save the chunk
chunk_path = target_dir / f"{fileName}.part{chunkIndex}"
with open(chunk_path, "wb") as f:
f.write(await file.read())
# If it's the last chunk, reconstruct the file
if chunkIndex + 1 == totalChunks:
final_file_path = target_dir / fileName
with open(final_file_path, "wb") as final_file:
for i in range(totalChunks):
part_path = target_dir / f"{fileName}.part{i}"
with open(part_path, "rb") as part_file:
final_file.write(part_file.read())
os.remove(part_path) # Remove the chunk after merging
print(f"Final file path: {final_file_path}")
# Lister tous les fichiers dans target_dir
files_in_dir = list(target_dir.glob("*")) # Liste tous les fichiers (y compris les sous-dossiers)
# Afficher les fichiers
for file in files_in_dir:
print(file)
return {
"status": "success",
"message": "Chunk uploaded successfully.",
"file_path": str(final_file_path)
}
return {"status": "success", "message": "Chunk uploaded successfully."}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
# Available backend options are: "jax", "torch", "tensorflow".
os.environ["KERAS_BACKEND"] = "tensorflow"
# Charger le modèle Keras
MAX_SEQ_LENGTH = 8
NUM_FEATURES = 1024
IMG_SIZE = 128
#center_crop_layer = layers.CenterCrop(IMG_SIZE, IMG_SIZE)
# Au lieu de CenterCrop
center_crop_layer = layers.Resizing(IMG_SIZE, IMG_SIZE)
def crop_center(frame):
cropped = center_crop_layer(frame[None, ...])
cropped = keras.ops.convert_to_numpy(cropped)
cropped = keras.ops.squeeze(cropped)
return cropped
def build_feature_extractor():
feature_extractor = DenseNet121(
weights="imagenet",
include_top=False,
pooling="avg",
input_shape=(IMG_SIZE, IMG_SIZE, 3),
)
preprocess_input = keras.applications.densenet.preprocess_input
inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))
preprocessed = preprocess_input(inputs)
outputs = feature_extractor(preprocessed)
return keras.Model(inputs, outputs, name="feature_extractor")
feature_extractor = build_feature_extractor()
@keras.saving.register_keras_serializable()
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, output_dim, **kwargs):
super().__init__(**kwargs)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=output_dim
)
self.sequence_length = sequence_length
self.output_dim = output_dim
def build(self, input_shape):
self.position_embeddings.build(input_shape)
def call(self, inputs):
# The inputs are of shape: `(batch_size, frames, num_features)`
inputs = keras.ops.cast(inputs, self.compute_dtype)
length = keras.ops.shape(inputs)[1]
positions = keras.ops.arange(start=0, stop=length, step=1)
embedded_positions = self.position_embeddings(positions)
return inputs + embedded_positions
@keras.saving.register_keras_serializable()
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.3
)
self.dense_proj = keras.Sequential(
[
layers.Dense(dense_dim, activation=keras.activations.gelu),
layers.Dense(embed_dim),
]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
def call(self, inputs, mask=None):
attention_output = self.attention(inputs, inputs, attention_mask=mask)
proj_input = self.layernorm_1(inputs + attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input + proj_output)
#model = keras.saving.load_model("hf://Og2/videoclassif")
model = keras.saving.load_model("hf://Og2/videoclassif", custom_objects={'PositionalEmbedding': PositionalEmbedding, 'TransformerEncoder': TransformerEncoder})
# Identifier le modèle Hugging Face et le fichier que vous voulez lire
model_repo = "Og2/videoclassif" # Remplacez par votre modèle spécifique
file_name = "labels.txt" # Le fichier que vous voulez télécharger
# Télécharger le fichier depuis Hugging Face Hub
labels_file_path = hf_hub_download(repo_id=model_repo, filename=file_name)
with open(labels_file_path, "r") as file:
class_labels = [line.strip() for line in file] # Lecture du fichier et création de la liste
#print("Tableau recréé à partir du fichier :")
#print(class_labels)
#read video
def load_video(path, max_frames=0, offload_to_cpu=False):
print("## load_video ##")
cap = cv2.VideoCapture(path)
frames = []
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame = frame[:, :, [2, 1, 0]]
frame = crop_center(frame)
if offload_to_cpu and keras.backend.backend() == "torch":
frame = frame.to("cpu")
frames.append(frame)
if len(frames) == max_frames:
break
finally:
cap.release()
print("load_video finalized !")
if offload_to_cpu and keras.backend.backend() == "torch":
return np.array([frame.to("cpu").numpy() for frame in frames])
return np.array(frames)
# test on video from val dataset
def prepare_single_video(frames):
frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")
# Pad shorter videos.
if len(frames) < MAX_SEQ_LENGTH:
diff = MAX_SEQ_LENGTH - len(frames)
padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3))
frames = np.concatenate(frames, padding)
frames = frames[None, ...]
# Extract features from the frames of the current video.
for i, batch in enumerate(frames):
video_length = batch.shape[0]
length = min(MAX_SEQ_LENGTH, video_length)
for j in range(length):
if np.mean(batch[j, :]) > 0.0:
frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])
else:
frame_features[i, j, :] = 0.0
return frame_features
def predict_action(video):
print("##### to be cancellled #####")
frames = load_video(video, offload_to_cpu=True)
frame_features = prepare_single_video(frames)
probabilities = model.predict(frame_features)[0]
# Obtenir le top 5
top_5_indices = np.argsort(probabilities)[::-1][:5]
results = {class_labels[i]: float(probabilities[i]) for i in top_5_indices}
#return results
# Sauvegarder le JSON dans un fichier temporaire
output_file = "result.json"
with open(output_file, "w") as f:
json.dump(results, f)
return results
# On va utiliser un ThreadPoolExecutor pour décharger les tâches lourdes
executor = ThreadPoolExecutor(max_workers=10) # Vous pouvez ajuster max_workers selon vos besoins
# Simulation de la fonction qui charge et prétraiterait la vidéo
@app.post("/predict-action/")
async def predict_action(uuid: str):
# Renvoie immédiatement une réponse pour indiquer que le traitement a commencé
print("##### predict-action started #####")
# Définir le répertoire cible
target_dir = Path(UPLOAD_DIR) / uuid
target_dir = target_dir.absolute() # Get the absolute path
# Lister tous les fichiers dans target_dir
files_in_dir = list(target_dir.glob("*")) # Liste tous les fichiers (y compris les sous-dossiers)
# Afficher les fichiers
for file in files_in_dir:
print(file)
# Chercher le fichier vidéo dans le répertoire
video_extensions = {".mp4", ".avi", ".mkv", ".mov", ".flv", ".wmv", ".webm"} # Liste des extensions vidéo courantes
# Trouver le fichier vidéo (s'il n'y en a qu'un dans le répertoire)
video_files = [file for file in target_dir.iterdir() if file.suffix.lower() in video_extensions]
file_path = None
if len(video_files) == 1:
file_path = video_files[0]
print(f"Video file found: {file_path}")
elif len(video_files) > 1:
print("Several video file or multiple video files found in the directory.")
file_path = video_files[0]
asyncio.create_task(run_video_processing(file_path)) # Démarre la tâche asynchrone
return {"message": "Prediction started. Please check back later for results."}
async def run_video_processing(file_path: str):
# Cette fonction va utiliser l'exécuteur pour éviter de bloquer le thread principal
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(executor, predict_video, file_path)
return result
def predict_video(video):
print("##### predict_video started #####")
# Charger les frames de la vidéo
frames = load_video(video, offload_to_cpu=True)
# Découper les frames en petits segments de 8 frames
segment_size = MAX_SEQ_LENGTH
total_frames = len(frames)
print("total_frames = ", total_frames)
segments = []
for i in range(0, total_frames, segment_size):
# Découper un segment de 8 frames (ou moins si c'est la fin de la vidéo)
segment = frames[i:i+segment_size]
segments.append((i, segment)) # Conserver l'index du début du segment et le segment de frames
# Liste pour stocker les données des colonnes
data = []
# Analyser chaque segment de 8 frames
for start_idx, segment in segments:
frame_features = prepare_single_video(segment)
probabilities = model.predict(frame_features)[0]
# Obtenir le top 5 des classes les plus probables
top_5_indices = np.argsort(probabilities)[::-1][:5]
top_5_classes = [(class_labels[i], probabilities[i]) for i in top_5_indices]
# Ajouter les informations sous forme de ligne
row = {
"start_frame": start_idx,
"end_frame": min(start_idx + segment_size - 1, total_frames - 1), # Assurer que la frame finale n'excède pas le nombre total de frames
}
# Ajouter les classes et leurs pourcentages
for rank, (label, prob) in enumerate(top_5_classes, start=1):
row[f"top{rank}"] = label
row[f"top{rank}%"] = prob
# Ajouter des valeurs vides si moins de 5 classes sont disponibles
for rank in range(len(top_5_classes) + 1, 6):
row[f"top{rank}"] = None
row[f"top{rank}%"] = None
data.append(row)
# Créer une DataFrame à partir des données
df = pd.DataFrame(data)
print("##### DataFrame created #####")
print(df)
results = ComputeStatistics(df)
return results
def ComputeStatistics(df):
# Calculer les statistiques supplémentaires
goalConceeded = df['top1'].str.startswith("Goal_2").sum()
totalShots1 = df['top1'].str.startswith("Shot_1").sum()
goal1_1 = df['top1'].str.startswith("Goal_1-3").sum()
goal1_2 = df['top1'].str.startswith("Goal_1-2").sum()
goal1_5 = df['top1'].str.startswith("Goal_1-5").sum()
save1 = (df['top1'] == "Block_2-1").sum() # Compter uniquement si top1 est exactement "Block_2-1"
# Statistiques supplémentaires
totalShots2 = df['top1'].str.startswith("Shot_2").sum()
totalGoal2 = df['top1'].str.startswith("Goal_2").sum()
totalGoal1 = df['top1'].str.startswith("Goal_1").sum()
totalBlock1 = (df['top1'] == "Block_1-1").sum() # Exact match pour "Block_1-1"
totalBlock2 = (df['top1'] == "Block_2-1").sum() # Exact match pour "Block_2-1"
# Calcul de la victoire
vistory = 1 if totalGoal1 > totalGoal2 else 2
# Calcul des taux de sauvegarde
saveRate1 = totalBlock1 / (totalBlock1 + totalGoal2) if (totalBlock1 + totalGoal2) > 0 else 0
saveRate2 = totalBlock2 / (totalBlock2 + totalGoal1) if (totalBlock2 + totalGoal1) > 0 else 0
# Calculer le temps du premier Goal_1
first_goal1_row = df[df['top1'].str.startswith("Goal_1")].iloc[0] if not df[df['top1'].str.startswith("Goal_1")].empty else None
timeFirstGoal1 = (1 / 30) * first_goal1_row['start_frame'] if first_goal1_row is not None and 'start_frame' in first_goal1_row else None
# Calculer le temps du premier Goal_2
first_goal2_row = df[df['top1'].str.startswith("Goal_2")].iloc[0] if not df[df['top1'].str.startswith("Goal_2")].empty else None
timeFirstGoal2 = (1 / 30) * first_goal2_row['start_frame'] if first_goal2_row is not None and 'start_frame' in first_goal2_row else None
# Calculer le taux de conversion
convertionRate1 = totalGoal1 / totalShots1 if totalShots1 > 0 else 0
# Statistiques Clean Sheet
cleanSheet1 = 1 if totalGoal2 > 0 else 0
cleanSheet2 = 1 if totalGoal1 > 0 else 0
# Créer un dictionnaire pour les statistiques
statistics = {
"goalConceeded": goalConceeded,
"totalShots1": totalShots1,
"goal1_1": goal1_1,
"goal1_2": goal1_2,
"goal1_5": goal1_5,
"save1": save1,
"timeFirstGoal1": timeFirstGoal1,
"timeFirstGoal2": timeFirstGoal2,
"convertionRate1": convertionRate1,
"totalShots2": totalShots2,
"totalGoal2": totalGoal2,
"totalGoal1": totalGoal1,
"totalBlock1": totalBlock1,
"totalBlock2": totalBlock2,
"vistory": vistory,
"saveRate1": saveRate1,
"saveRate2": saveRate2,
"cleanSheet1": cleanSheet1,
"cleanSheet2": cleanSheet2
}
# Convertir les valeurs non compatibles en types natifs avant la sérialisation
for key, value in statistics.items():
if isinstance(value, (np.integer, np.floating)): # Si NumPy
statistics[key] = value.item()
elif isinstance(value, pd.Timestamp): # Si c'est un Timestamp
statistics[key] = value.isoformat()
# Générer un JSON à partir des statistiques
statistics_json = json.dumps(statistics, indent=4)
print("##### Statistics JSON #####")
print(statistics_json)
return statistics_json
UPLOAD_DIR = Path("/app/uploads") # Dossier temporaire pour stocker les chunks
HF_TOKEN = os.getenv('HF_TOKEN') # 🔥 Remplace par ton token Hugging Face
DATASET_REPO = "Og2/myDataSet" # 🔥 Remplace par ton dataset
api = HfApi()
@app.post("/upload-dataset/")
async def upload_file(
file: UploadFile = File(...),
chunkIndex: int = Form(...),
totalChunks: int = Form(...),
fileName: str = Form(...),
directory: str = Form(...),
):
try:
print(f"Received: chunkIndex={chunkIndex}, totalChunks={totalChunks}, fileName={fileName}, directory={directory}")
# Créer le dossier temporaire si nécessaire
target_dir = UPLOAD_DIR / directory
target_dir.mkdir(parents=True, exist_ok=True)
# Sauvegarder le chunk
chunk_path = target_dir / f"{fileName}.part{chunkIndex}"
with open(chunk_path, "wb") as f:
f.write(await file.read())
# Reconstruction si dernier chunk reçu
if chunkIndex + 1 == totalChunks:
final_file_path = target_dir / fileName
with open(final_file_path, "wb") as final_file:
for i in range(totalChunks):
part_path = target_dir / f"{fileName}.part{i}"
with open(part_path, "rb") as part_file:
final_file.write(part_file.read())
os.remove(part_path) # Supprimer les chunks après fusion
print(f"Final file created: {final_file_path}")
# 🔥 Upload vers Hugging Face
api.upload_file(
path_or_fileobj=str(final_file_path),
path_in_repo=f"{directory}/{fileName}", # Stocker dans un sous-dossier du dataset
repo_id=DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN,
)
# Supprimer le fichier local après upload
os.remove(final_file_path)
return {
"status": "success",
"message": "File uploaded successfully to Hugging Face.",
"hf_url": f"https://huggingface.co/datasets/{DATASET_REPO}/blob/main/{directory}/{fileName}"
}
return {"status": "success", "message": "Chunk uploaded successfully."}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
@app.get("/list-videos/")
async def list_videos():
try:
# Récupérer la liste des fichiers du dataset
files = api.list_repo_files(repo_id=DATASET_REPO, repo_type="dataset", token=HF_TOKEN)
# Filtrer les fichiers pour ne garder que les vidéos (par exemple .mp4, .avi, .mov)
video_extensions = [".mp4", ".avi", ".mov", ".mkv", ".flv"] # Ajouter d'autres extensions si nécessaire
video_files = [f for f in files if any(f.endswith(ext) for ext in video_extensions)]
# Formater en JSON avec URLs complètes
videos_list = [{"file_name": f, "url": f"https://huggingface.co/datasets/{DATASET_REPO}/blob/main/{f}"} for f in video_files]
return {"status": "success", "videos": videos_list}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to fetch videos: {str(e)}")
@app.get("/get-video-frames/")
async def get_video_frames(file_name: str, frame_id: int) -> dict:
try:
# URL du fichier vidéo dans le dataset
video_url = f"https://huggingface.co/datasets/{DATASET_REPO}/resolve/main/{file_name}"
# Télécharger la vidéo
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
response = requests.get(video_url, headers=headers)
if response.status_code != 200:
raise HTTPException(status_code=404, detail="Vidéo introuvable dans le dataset")
# Charger la vidéo en mémoire
video_bytes = io.BytesIO(response.content)
# Écriture dans un fichier temporaire pour OpenCV
temp_video_path = "/tmp/temp_video.mp4"
with open(temp_video_path, "wb") as f:
f.write(video_bytes.getvalue())
# Ouvrir la vidéo avec OpenCV
cap = cv2.VideoCapture(temp_video_path)
if not cap.isOpened():
raise HTTPException(status_code=500, detail="Impossible de charger la vidéo")
# Obtenir le nombre total de frames dans la vidéo
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Définir la plage de frames à extraire
start_frame = max(0, frame_id )
end_frame = min(total_frames, frame_id + 30) # extraction de 12 framees
frames = []
frame_size = (128, 128) # Taille des images pour Bubble
# Lire les frames dans la plage définie
for i in range(start_frame, end_frame):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if not ret:
break # Arrêter si la lecture échoue
# Convertir la frame BGR en RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Redimensionner la frame
img = Image.fromarray(frame_rgb).resize(frame_size)
# Sauvegarder l'image dans un buffer
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
# Encoder l'image en base64 avec le préfixe Bubble
img_base64 = f"data:image/png;base64,{base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')}"
# Ajouter à la liste des frames
frames.append({"frame_index": i, "image": img_base64})
cap.release()
return {"status": "success", "frames": frames}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur lors de l'extraction des frames : {str(e)}")