Spaces:
Running
Running
File size: 21,795 Bytes
2b833d3 dfafcae 250423a ed016d6 7a8dcdf 9340dee 7160ac8 e7cf1a5 720eedf e7cf1a5 7160ac8 ed016d6 250423a dfafcae 9fd0b7d dfafcae c947750 dfafcae c954280 dfafcae 5f81393 dfafcae 250423a dfafcae 250423a dfafcae 74b1c97 4963c89 74b1c97 dfafcae 74b1c97 cb7e3c6 74b1c97 dfafcae 91c3629 b1eeafb dfafcae 91c3629 b1eeafb 91c3629 c947750 5f81393 c947750 91c3629 31cb9ef 91c3629 0920000 5491e6b 0920000 5335ec3 7a2e9c8 5335ec3 15bbbd7 7a2e9c8 15bbbd7 90415df 5335ec3 b5a1e96 90415df b5a1e96 5335ec3 b5a1e96 5335ec3 15bbbd7 b5a1e96 7a2e9c8 b5a1e96 5335ec3 15bbbd7 5335ec3 15bbbd7 5335ec3 584c15a ef3991f 584c15a 2c2b5a9 928f67f 9058656 928f67f ae3d6d1 9058656 928f67f 9058656 928f67f 9058656 928f67f e68869f 97cda86 16efa24 35e9aa8 e68869f 7359005 35e9aa8 e68869f 35e9aa8 e68869f 35e9aa8 e68869f 16efa24 e68869f 16efa24 6cd3f81 16efa24 35e9aa8 16efa24 e735857 16efa24 35e9aa8 16efa24 e68869f 16efa24 35e9aa8 e68869f 16efa24 e68869f 35e9aa8 e68869f 16efa24 e68869f 16efa24 e68869f 35e9aa8 e68869f 90415df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
# https://Og2-FoosballAnalytics.hf.space/
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from pathlib import Path
import os
from pydantic import BaseModel
import json
import tensorflow as tf
import numpy as np
import cv2
import keras
from keras.saving import register_keras_serializable
from keras import layers
from huggingface_hub import hf_hub_download
from keras.applications.densenet import DenseNet121
from concurrent.futures import ThreadPoolExecutor
import asyncio
import pandas as pd
from typing import List
from huggingface_hub import HfApi
import requests
import io
import base64
from PIL import Image
#from tensorflow_docs.vis import embed
app = FastAPI()
UPLOAD_DIR = "uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)
@app.post("/upload-dropzone/")
async def upload_file(
file: UploadFile = File(...),
chunkIndex: int = Form(...),
totalChunks: int = Form(...),
fileName: str = Form(...),
directory: str = Form(...),
):
try:
print(f"Received: chunkIndex={chunkIndex}, totalChunks={totalChunks}, fileName={fileName}, directory={directory}")
# Create the directory if it doesn't exist
target_dir = Path(UPLOAD_DIR) / directory
target_dir = target_dir.absolute() # Get the absolute path
target_dir.mkdir(parents=True, exist_ok=True)
# Save the chunk
chunk_path = target_dir / f"{fileName}.part{chunkIndex}"
with open(chunk_path, "wb") as f:
f.write(await file.read())
# If it's the last chunk, reconstruct the file
if chunkIndex + 1 == totalChunks:
final_file_path = target_dir / fileName
with open(final_file_path, "wb") as final_file:
for i in range(totalChunks):
part_path = target_dir / f"{fileName}.part{i}"
with open(part_path, "rb") as part_file:
final_file.write(part_file.read())
os.remove(part_path) # Remove the chunk after merging
print(f"Final file path: {final_file_path}")
# Lister tous les fichiers dans target_dir
files_in_dir = list(target_dir.glob("*")) # Liste tous les fichiers (y compris les sous-dossiers)
# Afficher les fichiers
for file in files_in_dir:
print(file)
return {
"status": "success",
"message": "Chunk uploaded successfully.",
"file_path": str(final_file_path)
}
return {"status": "success", "message": "Chunk uploaded successfully."}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
# Available backend options are: "jax", "torch", "tensorflow".
os.environ["KERAS_BACKEND"] = "tensorflow"
# Charger le modèle Keras
MAX_SEQ_LENGTH = 8
NUM_FEATURES = 1024
IMG_SIZE = 128
#center_crop_layer = layers.CenterCrop(IMG_SIZE, IMG_SIZE)
# Au lieu de CenterCrop
center_crop_layer = layers.Resizing(IMG_SIZE, IMG_SIZE)
def crop_center(frame):
cropped = center_crop_layer(frame[None, ...])
cropped = keras.ops.convert_to_numpy(cropped)
cropped = keras.ops.squeeze(cropped)
return cropped
def build_feature_extractor():
feature_extractor = DenseNet121(
weights="imagenet",
include_top=False,
pooling="avg",
input_shape=(IMG_SIZE, IMG_SIZE, 3),
)
preprocess_input = keras.applications.densenet.preprocess_input
inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))
preprocessed = preprocess_input(inputs)
outputs = feature_extractor(preprocessed)
return keras.Model(inputs, outputs, name="feature_extractor")
feature_extractor = build_feature_extractor()
@keras.saving.register_keras_serializable()
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, output_dim, **kwargs):
super().__init__(**kwargs)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=output_dim
)
self.sequence_length = sequence_length
self.output_dim = output_dim
def build(self, input_shape):
self.position_embeddings.build(input_shape)
def call(self, inputs):
# The inputs are of shape: `(batch_size, frames, num_features)`
inputs = keras.ops.cast(inputs, self.compute_dtype)
length = keras.ops.shape(inputs)[1]
positions = keras.ops.arange(start=0, stop=length, step=1)
embedded_positions = self.position_embeddings(positions)
return inputs + embedded_positions
@keras.saving.register_keras_serializable()
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.3
)
self.dense_proj = keras.Sequential(
[
layers.Dense(dense_dim, activation=keras.activations.gelu),
layers.Dense(embed_dim),
]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
def call(self, inputs, mask=None):
attention_output = self.attention(inputs, inputs, attention_mask=mask)
proj_input = self.layernorm_1(inputs + attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input + proj_output)
#model = keras.saving.load_model("hf://Og2/videoclassif")
model = keras.saving.load_model("hf://Og2/videoclassif", custom_objects={'PositionalEmbedding': PositionalEmbedding, 'TransformerEncoder': TransformerEncoder})
# Identifier le modèle Hugging Face et le fichier que vous voulez lire
model_repo = "Og2/videoclassif" # Remplacez par votre modèle spécifique
file_name = "labels.txt" # Le fichier que vous voulez télécharger
# Télécharger le fichier depuis Hugging Face Hub
labels_file_path = hf_hub_download(repo_id=model_repo, filename=file_name)
with open(labels_file_path, "r") as file:
class_labels = [line.strip() for line in file] # Lecture du fichier et création de la liste
#print("Tableau recréé à partir du fichier :")
#print(class_labels)
#read video
def load_video(path, max_frames=0, offload_to_cpu=False):
print("## load_video ##")
cap = cv2.VideoCapture(path)
frames = []
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame = frame[:, :, [2, 1, 0]]
frame = crop_center(frame)
if offload_to_cpu and keras.backend.backend() == "torch":
frame = frame.to("cpu")
frames.append(frame)
if len(frames) == max_frames:
break
finally:
cap.release()
print("load_video finalized !")
if offload_to_cpu and keras.backend.backend() == "torch":
return np.array([frame.to("cpu").numpy() for frame in frames])
return np.array(frames)
# test on video from val dataset
def prepare_single_video(frames):
frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")
# Pad shorter videos.
if len(frames) < MAX_SEQ_LENGTH:
diff = MAX_SEQ_LENGTH - len(frames)
padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3))
frames = np.concatenate(frames, padding)
frames = frames[None, ...]
# Extract features from the frames of the current video.
for i, batch in enumerate(frames):
video_length = batch.shape[0]
length = min(MAX_SEQ_LENGTH, video_length)
for j in range(length):
if np.mean(batch[j, :]) > 0.0:
frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])
else:
frame_features[i, j, :] = 0.0
return frame_features
def predict_action(video):
print("##### to be cancellled #####")
frames = load_video(video, offload_to_cpu=True)
frame_features = prepare_single_video(frames)
probabilities = model.predict(frame_features)[0]
# Obtenir le top 5
top_5_indices = np.argsort(probabilities)[::-1][:5]
results = {class_labels[i]: float(probabilities[i]) for i in top_5_indices}
#return results
# Sauvegarder le JSON dans un fichier temporaire
output_file = "result.json"
with open(output_file, "w") as f:
json.dump(results, f)
return results
# On va utiliser un ThreadPoolExecutor pour décharger les tâches lourdes
executor = ThreadPoolExecutor(max_workers=10) # Vous pouvez ajuster max_workers selon vos besoins
# Simulation de la fonction qui charge et prétraiterait la vidéo
@app.post("/predict-action/")
async def predict_action(uuid: str):
# Renvoie immédiatement une réponse pour indiquer que le traitement a commencé
print("##### predict-action started #####")
# Définir le répertoire cible
target_dir = Path(UPLOAD_DIR) / uuid
target_dir = target_dir.absolute() # Get the absolute path
# Lister tous les fichiers dans target_dir
files_in_dir = list(target_dir.glob("*")) # Liste tous les fichiers (y compris les sous-dossiers)
# Afficher les fichiers
for file in files_in_dir:
print(file)
# Chercher le fichier vidéo dans le répertoire
video_extensions = {".mp4", ".avi", ".mkv", ".mov", ".flv", ".wmv", ".webm"} # Liste des extensions vidéo courantes
# Trouver le fichier vidéo (s'il n'y en a qu'un dans le répertoire)
video_files = [file for file in target_dir.iterdir() if file.suffix.lower() in video_extensions]
file_path = None
if len(video_files) == 1:
file_path = video_files[0]
print(f"Video file found: {file_path}")
elif len(video_files) > 1:
print("Several video file or multiple video files found in the directory.")
file_path = video_files[0]
asyncio.create_task(run_video_processing(file_path)) # Démarre la tâche asynchrone
return {"message": "Prediction started. Please check back later for results."}
async def run_video_processing(file_path: str):
# Cette fonction va utiliser l'exécuteur pour éviter de bloquer le thread principal
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(executor, predict_video, file_path)
return result
def predict_video(video):
print("##### predict_video started #####")
# Charger les frames de la vidéo
frames = load_video(video, offload_to_cpu=True)
# Découper les frames en petits segments de 8 frames
segment_size = MAX_SEQ_LENGTH
total_frames = len(frames)
print("total_frames = ", total_frames)
segments = []
for i in range(0, total_frames, segment_size):
# Découper un segment de 8 frames (ou moins si c'est la fin de la vidéo)
segment = frames[i:i+segment_size]
segments.append((i, segment)) # Conserver l'index du début du segment et le segment de frames
# Liste pour stocker les données des colonnes
data = []
# Analyser chaque segment de 8 frames
for start_idx, segment in segments:
frame_features = prepare_single_video(segment)
probabilities = model.predict(frame_features)[0]
# Obtenir le top 5 des classes les plus probables
top_5_indices = np.argsort(probabilities)[::-1][:5]
top_5_classes = [(class_labels[i], probabilities[i]) for i in top_5_indices]
# Ajouter les informations sous forme de ligne
row = {
"start_frame": start_idx,
"end_frame": min(start_idx + segment_size - 1, total_frames - 1), # Assurer que la frame finale n'excède pas le nombre total de frames
}
# Ajouter les classes et leurs pourcentages
for rank, (label, prob) in enumerate(top_5_classes, start=1):
row[f"top{rank}"] = label
row[f"top{rank}%"] = prob
# Ajouter des valeurs vides si moins de 5 classes sont disponibles
for rank in range(len(top_5_classes) + 1, 6):
row[f"top{rank}"] = None
row[f"top{rank}%"] = None
data.append(row)
# Créer une DataFrame à partir des données
df = pd.DataFrame(data)
print("##### DataFrame created #####")
print(df)
results = ComputeStatistics(df)
return results
def ComputeStatistics(df):
# Calculer les statistiques supplémentaires
goalConceeded = df['top1'].str.startswith("Goal_2").sum()
totalShots1 = df['top1'].str.startswith("Shot_1").sum()
goal1_1 = df['top1'].str.startswith("Goal_1-3").sum()
goal1_2 = df['top1'].str.startswith("Goal_1-2").sum()
goal1_5 = df['top1'].str.startswith("Goal_1-5").sum()
save1 = (df['top1'] == "Block_2-1").sum() # Compter uniquement si top1 est exactement "Block_2-1"
# Statistiques supplémentaires
totalShots2 = df['top1'].str.startswith("Shot_2").sum()
totalGoal2 = df['top1'].str.startswith("Goal_2").sum()
totalGoal1 = df['top1'].str.startswith("Goal_1").sum()
totalBlock1 = (df['top1'] == "Block_1-1").sum() # Exact match pour "Block_1-1"
totalBlock2 = (df['top1'] == "Block_2-1").sum() # Exact match pour "Block_2-1"
# Calcul de la victoire
vistory = 1 if totalGoal1 > totalGoal2 else 2
# Calcul des taux de sauvegarde
saveRate1 = totalBlock1 / (totalBlock1 + totalGoal2) if (totalBlock1 + totalGoal2) > 0 else 0
saveRate2 = totalBlock2 / (totalBlock2 + totalGoal1) if (totalBlock2 + totalGoal1) > 0 else 0
# Calculer le temps du premier Goal_1
first_goal1_row = df[df['top1'].str.startswith("Goal_1")].iloc[0] if not df[df['top1'].str.startswith("Goal_1")].empty else None
timeFirstGoal1 = (1 / 30) * first_goal1_row['start_frame'] if first_goal1_row is not None and 'start_frame' in first_goal1_row else None
# Calculer le temps du premier Goal_2
first_goal2_row = df[df['top1'].str.startswith("Goal_2")].iloc[0] if not df[df['top1'].str.startswith("Goal_2")].empty else None
timeFirstGoal2 = (1 / 30) * first_goal2_row['start_frame'] if first_goal2_row is not None and 'start_frame' in first_goal2_row else None
# Calculer le taux de conversion
convertionRate1 = totalGoal1 / totalShots1 if totalShots1 > 0 else 0
# Statistiques Clean Sheet
cleanSheet1 = 1 if totalGoal2 > 0 else 0
cleanSheet2 = 1 if totalGoal1 > 0 else 0
# Créer un dictionnaire pour les statistiques
statistics = {
"goalConceeded": goalConceeded,
"totalShots1": totalShots1,
"goal1_1": goal1_1,
"goal1_2": goal1_2,
"goal1_5": goal1_5,
"save1": save1,
"timeFirstGoal1": timeFirstGoal1,
"timeFirstGoal2": timeFirstGoal2,
"convertionRate1": convertionRate1,
"totalShots2": totalShots2,
"totalGoal2": totalGoal2,
"totalGoal1": totalGoal1,
"totalBlock1": totalBlock1,
"totalBlock2": totalBlock2,
"vistory": vistory,
"saveRate1": saveRate1,
"saveRate2": saveRate2,
"cleanSheet1": cleanSheet1,
"cleanSheet2": cleanSheet2
}
# Convertir les valeurs non compatibles en types natifs avant la sérialisation
for key, value in statistics.items():
if isinstance(value, (np.integer, np.floating)): # Si NumPy
statistics[key] = value.item()
elif isinstance(value, pd.Timestamp): # Si c'est un Timestamp
statistics[key] = value.isoformat()
# Générer un JSON à partir des statistiques
statistics_json = json.dumps(statistics, indent=4)
print("##### Statistics JSON #####")
print(statistics_json)
return statistics_json
UPLOAD_DIR = Path("/app/uploads") # Dossier temporaire pour stocker les chunks
HF_TOKEN = os.getenv('HF_TOKEN') # 🔥 Remplace par ton token Hugging Face
DATASET_REPO = "Og2/myDataSet" # 🔥 Remplace par ton dataset
api = HfApi()
@app.post("/upload-dataset/")
async def upload_file(
file: UploadFile = File(...),
chunkIndex: int = Form(...),
totalChunks: int = Form(...),
fileName: str = Form(...),
directory: str = Form(...),
):
try:
print(f"Received: chunkIndex={chunkIndex}, totalChunks={totalChunks}, fileName={fileName}, directory={directory}")
# Créer le dossier temporaire si nécessaire
target_dir = UPLOAD_DIR / directory
target_dir.mkdir(parents=True, exist_ok=True)
# Sauvegarder le chunk
chunk_path = target_dir / f"{fileName}.part{chunkIndex}"
with open(chunk_path, "wb") as f:
f.write(await file.read())
# Reconstruction si dernier chunk reçu
if chunkIndex + 1 == totalChunks:
final_file_path = target_dir / fileName
with open(final_file_path, "wb") as final_file:
for i in range(totalChunks):
part_path = target_dir / f"{fileName}.part{i}"
with open(part_path, "rb") as part_file:
final_file.write(part_file.read())
os.remove(part_path) # Supprimer les chunks après fusion
print(f"Final file created: {final_file_path}")
# 🔥 Upload vers Hugging Face
api.upload_file(
path_or_fileobj=str(final_file_path),
path_in_repo=f"{directory}/{fileName}", # Stocker dans un sous-dossier du dataset
repo_id=DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN,
)
# Supprimer le fichier local après upload
os.remove(final_file_path)
return {
"status": "success",
"message": "File uploaded successfully to Hugging Face.",
"hf_url": f"https://huggingface.co/datasets/{DATASET_REPO}/blob/main/{directory}/{fileName}"
}
return {"status": "success", "message": "Chunk uploaded successfully."}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
@app.get("/list-videos/")
async def list_videos():
try:
# Récupérer la liste des fichiers du dataset
files = api.list_repo_files(repo_id=DATASET_REPO, repo_type="dataset", token=HF_TOKEN)
# Filtrer les fichiers pour ne garder que les vidéos (par exemple .mp4, .avi, .mov)
video_extensions = [".mp4", ".avi", ".mov", ".mkv", ".flv"] # Ajouter d'autres extensions si nécessaire
video_files = [f for f in files if any(f.endswith(ext) for ext in video_extensions)]
# Formater en JSON avec URLs complètes
videos_list = [{"file_name": f, "url": f"https://huggingface.co/datasets/{DATASET_REPO}/blob/main/{f}"} for f in video_files]
return {"status": "success", "videos": videos_list}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to fetch videos: {str(e)}")
@app.get("/get-video-frames/")
async def get_video_frames(file_name: str, frame_id: int) -> dict:
try:
# URL du fichier vidéo dans le dataset
video_url = f"https://huggingface.co/datasets/{DATASET_REPO}/resolve/main/{file_name}"
# Télécharger la vidéo
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
response = requests.get(video_url, headers=headers)
if response.status_code != 200:
raise HTTPException(status_code=404, detail="Vidéo introuvable dans le dataset")
# Charger la vidéo en mémoire
video_bytes = io.BytesIO(response.content)
# Écriture dans un fichier temporaire pour OpenCV
temp_video_path = "/tmp/temp_video.mp4"
with open(temp_video_path, "wb") as f:
f.write(video_bytes.getvalue())
# Ouvrir la vidéo avec OpenCV
cap = cv2.VideoCapture(temp_video_path)
if not cap.isOpened():
raise HTTPException(status_code=500, detail="Impossible de charger la vidéo")
# Obtenir le nombre total de frames dans la vidéo
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Définir la plage de frames à extraire
start_frame = max(0, frame_id )
end_frame = min(total_frames, frame_id + 30) # extraction de 12 framees
frames = []
frame_size = (128, 128) # Taille des images pour Bubble
# Lire les frames dans la plage définie
for i in range(start_frame, end_frame):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if not ret:
break # Arrêter si la lecture échoue
# Convertir la frame BGR en RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Redimensionner la frame
img = Image.fromarray(frame_rgb).resize(frame_size)
# Sauvegarder l'image dans un buffer
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
# Encoder l'image en base64 avec le préfixe Bubble
img_base64 = f"data:image/png;base64,{base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')}"
# Ajouter à la liste des frames
frames.append({"frame_index": i, "image": img_base64})
cap.release()
return {"status": "success", "frames": frames}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur lors de l'extraction des frames : {str(e)}")
|